首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 280 毫秒
1.
Here we describe a single chemical route to obtain highly dispersed nanometric Ni particles embedded in titania/carbon matrixes (amorphous and crystalline). The synthesis of these nanocomposites is based on a polymeric precursor method. The metallic Ni nanoparticles (1-15 nm) were obtained in a single process. We also present the results of photocatalytic experiments involving a series of nanocrystalline composites based on TiO2/carbon with embedded Ni nanoparticles as nanocatalysts for rhodamine 6G degradation in aqueous solution and investigate the effects of the structure and properties of the nanocomposites on their photocatalytic applications. The effect of the different annealing treatments on the formation of TiO2 nanophases (anatase and/or rutile), the size of Ni particles and the role of the residual carbon phase on the final solid are also described.  相似文献   

2.
We study the temperature-dependent transformation of two distinctly synthesized TiO2 nanoparticles from the anatase to the rutile phase. These studies are carried out over the temperature range extending from room temperature to an excess of 800 °C where the anatase to rutile conversion is found to occur. Results obtained for both a sol-gel-generated nanocolloid (3-20 nm) and a sol-gel-generated micelle nanostructure (∼40 nm) are evaluated. While the TiO2 nanocolloid structures aggregate to form larger crystallites as a function of increasing temperature with sizes comparable to the sol-gel-generated micelle structures, the resulting anatase crystallites, which are of a diameter 40-50 nm, appear to transform to comparable or slightly smaller rutile structures at 800 °C. This is in contrast to the transformation to larger rutile structures, observed for larger anatase particles. The importance of kinetic effects is considered as it enhances the rate of anatase to rutile conversion. These characteristics are established using a combination of Raman spectroscopic, X-ray diffraction, and scanning electron microscopy. The relative playoffs of the Raman and X-ray diffraction techniques are considered as they are used for the analysis of particles at the nanoscale, especially when phase transformations are evaluated.  相似文献   

3.
Pure anatase is a metastable phase and inclined to (transform) be transformed into rutile structure under heating over than 500 °C, which limits its suitability for high-temperature applications. Hitherto much research efforts have been made to increase the stability temperature of anatase structure. However, metallic doping usually introduced metallic oxides into titania at high temperature, and many nonmetallic doping are not competent for increasing the stability temperature of anatase structure up to 900 °C. In this study, F-doped anatase TiO2 nanoparticles were conveniently prepared via the alcoholysis of TiCl4 and the as-prepared product shows very high stability temperature up to 1000 °C before being transformed into rutile structure phase. On the basis of XPS results of F-doped titania annealed at different temperature, it is learned that the F atoms were anchored on the crystal planes of anatase in favor of decreasing the energy faces of anatase and stabilizing the anatase structure till annealed at 1300 °C all the anatase were transformed into rutile phase.  相似文献   

4.
The tungstosilicic acid/titania composites were prepared by the sol-gel method. Titanium isopropoxide was used as titania precursor, and urea as a low-cost template. The tungstosilicic acid (TSA) was added in the same step as that in which titania hydrogel is formed. The TSA-modified samples only showed the characteristic peaks of anatase phase of titanium oxide in the XRD patterns, indicating that the presence of TSA retarded the crystallization of the anatase phase and its transformation into the rutile phase. Spherical particles with sizes between 200 and 700 nm, formed by aggregation of nanoparticle aggregates (4-50 nm in size), were observed. The particle size increased when the TSA content was raised and also increased slightly with the thermal treatment temperature. Mesoporous materials were obtained, with a mean pore diameter higher than 3.1 nm. Both the increase of the TSA concentration in the solid and the calcination temperature led to a decrease in the specific surface area of the samples. The main heteropolyoxometallate species present in the composites is the [SiW12O40]4− anion for the composites calcined up to 500 °C. The band gap energy decreased as a result of the introduction of TSA into the titania matrix, though it remained almost constant with the calcination temperature increase.  相似文献   

5.
Rui Shao 《Surface science》2007,601(6):1582-1589
We have explored the systematics of TiO2 polymorph nucleation during film growth by molecular beam epitaxy on perovskite substrates. The accidental lattice match between anatase (0 0 1) and LaAlO3(0 0 1) or SrTiO3(0 0 1) typically results in anatase nucleation at the interface. However, the growth conditions dictate whether or not rutile also nucleates, and the associated morphological and structural properties of the composite film. Four symmetry equivalent epitaxial orientations of rutile on anatase are observed when rutile nucleates as discrete particles on LaAlO3(0 0 1). Such films constitute model systems for studying the anatase/rutile interface, which is of considerable current interest in photochemistry.  相似文献   

6.
The current paper presents results of a quantum-chemical study of the surface structure of nanoparticles of both rutile and anatase crystallographic modifications. Different stages of the surface relaxation are discussed. Water adsorption is considered. The calculations were performed in the spd-basis by using semi-empirical quantum-chemical codes, both sequential and parallel. The results are mainly addressed to the study of the interface formed by titania nanoparticles and a set of carboxylated species, namely, benzoic, bi-isonicotinic acids as well as tris-(2,2′-dcbipyridine) Fe(II) complex placed on the surface of either rutile or anatase polymorphs.  相似文献   

7.
Presented are thermal desorption spectroscopy (TDS) measurements of iso-/n-butane adsorption on a variety of TiO2 nanotubes (TiNTs) samples which are characterized by different crystal structures. The results are compared with a prior study on anatase(0 0 1) thin films grown on SrTiO3(0 0 1). A distinct kinetic structure-activity relationship was present, i.e., the binding energies of the alkanes depend on the polymorph (anatase vs. mixed anatase/rutile) of TiO2. A direct-fitting procedure of the TDS data has been applied to extract the kinetics parameters. The binding energies in the limit of zero coverage decrease as anatase thin film > amorphous-TiNTs ∼ polycrystalline anatase TiNTs > polycrystalline mixed anatase/rutile TiNTs.  相似文献   

8.
The current paper presents results of a quantum-chemical study of the surface structure of nanoparticles of both rutile and anatase crystallographic modifications. Different stages of the surface relaxation are discussed. Water adsorption is considered. The calculations were performed in the spd-basis by using semi-empirical quantum-chemical codes, both sequential and parallel. The results are mainly addressed to the study of the interface formed by titania nanoparticles and a set of carboxylated species, namely, benzoic, bi-isonicotinic acids as well as tris-(2,2′-dcbipyridine) Fe(II) complex placed on the surface of either rutile or anatase polymorphs.This revised version was published online in August 2005 with a corrected issue number.  相似文献   

9.
Controlled photodeposition of silver nanoparticles (AgNP) on titania coatings using two different sources of UV light is described. Titania (anatase) thin films were prepared by the sol-gel dip-coating method on silicon wafers. AgNPs were grown on the titania surface as a result of UV illumination of titania films immersed in aqueous solutions of silver nitrate. UV xenon lamp or excimer laser, both operating at the wavelength 351 ± 5 nm, was used as illumination sources. The AFM topography of AgNP/TiO2 nanocomposites revealed that silver nanoparticles could be synthesized by both sources of illumination, however the photocatalysis carried out by UV light from xenon lamp illumination leads to larger AgNP than those synthesized using the laser beam. It was found that the increasing concentration of silver ions in the initial solution increases the number of Ag nanoparticles on the titania surface, while longer time of irradiation results the growth of larger size nanoparticles. Antibacterial tests performed on TiO2 covered by Ag nanoparticles revealed that increasing density of nanoparticles enhances the inhibition of bacterial growth. It was also found that antibacterial activity drops by only 10-15% after 6 cycles compared to the initial use.  相似文献   

10.
Confocal Raman microscopy, a relatively new and advanced technique, is found to be suitable for imaging the chemical morphology below the submicrometer scale. It has been employed to probe the phase transformation of carbon‐containing titania (TiO2) nanopowder and titania thin film subjected to laser annealing. The observation of phase transformation from the anatase phase to the rutile phase at high laser power annealing is attributed to carbon inclusion inside or on the surface of titania. Upon annealing, carbon could react with the oxygen of titania and create oxygen vacancies favoring the transformation from the anatase to the rutile phase. This study provides evidence for the carbon‐assisted phase transformation for creating carbon‐containing mixed‐phase titanium dioxide by laser annealing. We explicitly focus on the presence of carbon in the phase transformation of TiO2 using confocal Raman microscopy. In all of the investigated samples, mixed anatase/rutile phases with carbon specifically was found at the rutile site. X‐ray diffraction (XRD), scanning electron microscopy (SEM) and energy‐dispersive spectroscopy (EDS) studies have been performed in addition to Raman mapping to verify the mixed‐phase titania formation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
TiO2 nanoparticles have been prepared by simple chemical precipitation method and annealed at different temperatures. The as-prepared TiO2 are amorphous, and they transform into anatase phase on annealing at 450 °C, and rutile phase on annealing at 900 °C. The X-ray diffraction results showed that TiO2 nanoparticles with grain size in the range of 21–24 nm for anatase phase and 69–74 nm for rutile phase have been obtained. FESEM images show the formation of TiO2 nanoparticles with small size in structure. The FTIR and Raman spectra exhibited peaks corresponding to the anatase and rutile structure phases of TiO2. Optical absorption studies reveal that the absorption edge shifts towards longer wavelength (red shift) with increase of annealing temperature.  相似文献   

12.
Hard magnetic composites—hollow microsphere (core)/titania (intermediate layer)/barium ferrite (magnetic shell) (M/T/B) were prepared by wet-chemical method. Barium ferrite nanoparticles were directly coated on the rutile titania-coated hollow microsphere forming light hard magnetic composites using sol-gel technique. The prepared composites were characterized with FESEM, EDS, XRD and vibrating sample magnetometry. The composites are composed of barium ferrite, hematite, titania and mullite. For the samples with 40 wt.% barium ferrite, its specific saturation magnetization with titania is increased to 17.88 emu/g in comparison with 9.6 emu/g without titania. The function of titania in the composites is also discussed.  相似文献   

13.
Titania hollow submicrospheres with mixed phase (anatase-brookite or anatase-rutile) were synthesized via the combination of hydrothermal treatment and calcination of submicrospheres consisting of a polystyrene core and an amorphous TiO2 shell. After hydrothermal treatment, amorphous titania shell could be transformed to anatase-brookite shell consisting of loose packed titania nanocrystals, which could be further converted to anatase-brookite (below 700 °C) or anatase-rutile titania (700-800 °C) hollow spheres with rough surface via calcination. The loose packing of titania nanocrystals not only inhibited the transformation temperature from anatase to rutile, but also provided titania hollow submicrospheres with high photodegradation activity of Rhodamine B. The photocatalytic activity of titania hollow spheres increased firstly then decreased when the calcination temperature was varied in the range of 450-800 °C, while hollow spheres obtained via calcinating at 700 °C exhibited the highest photocatalytic activity, which was five times higher than that of counterpart without hydrothermal treatment.  相似文献   

14.
TiO2 has attracted a lot of attention due to its photocatalytic properties and its potential applications in environmental purification and self cleaning coatings, as well as for its high optical transmittance in the visible-IR spectral range, high chemical stability and mechanical resistance. In this paper, we report on the growth of TiO2 nanocrystalline films on Si (1 0 0) substrates by pulsed laser deposition (PLD). Rutile sintered targets were irradiated by KrF excimer laser (λ = 248 nm, pulse duration ∼30 ns) in a controlled oxygen environment and at constant substrate temperature of 650 °C. The structural and morphological properties of the films have been studied for different deposition parameters, such as oxygen partial pressure (0.05-5 Pa) and laser fluence (2- 4 J/cm2). X-ray diffraction (XRD) shows the formation of both rutile and anatase phases; however, it is observed that the anatase phase is suppressed at the highest laser fluences. X-ray photoelectron spectroscopy (XPS) measurements were performed to determine the stoichiometry of the grown films. The surface morphology of the deposits, studied by scanning electron (SEM) and atomic force (AFM) microscopies, has revealed nanostructured films. The dimensions and density of the nanoparticles observed at the surface depend on the partial pressure of oxygen during growth. The smallest particles of about 40 nm diameter were obtained for the highest pressures of inlet gas.  相似文献   

15.
This paper reports experimental results on removal of sodium dodecylbenzene sulfonate (SDBS), using silica/titania nanorods/nanotubes composite membrane with photocatalytic capability. This multifunctional composite membrane has been successfully prepared from colloidal X-silica/titania sols (X denotes molar percent of silica) by the sol-gel technique. The prepared nanorods/nanotubes composite membranes were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), scanning probe microscope (SPM) and UV-vis diffuse reflectance spectra (DRS). XRD patterns confirmed that the embedding of amorphous silica into nanophase titania matrix helped to increase the thermal stability of titania and control the size of titania particles. The small size titania particles with anatase phase played an important role in formation of silica/titania nanorods/nanotubes composite membranes with photocatalytic capability. The percentage of anatase phase titania reached 93% when 20%-silica/titania nanorods/nanotubes composite membrane calcined at 400 °C for 2 h. Most (95%) of the pore volume was located in mesopores of diameters ranging from 1.4 to 10 nm. The experimental results showed that the removal of SDBS achieved 89% after 100 min by combining the photocatalysis with membrane filtration techniques. Although the SDBS was not completely decomposed by photocatalysis, the degradation of the SDBS helped to enhance composite membrane flux and prevent membrane fouling. It was possible to treat successfully surfactant wastewater using multifunctional silica/titania nanorods/nanotubes composite membrane by means of a continuous process; this could be interesting for industrial applications.  相似文献   

16.
Pure titania porous layers consisted of anatase and rutile phases, chemically and structurally suitable for catalytic applications, were grown via micro-arc oxidation (MAO). The effect of applied voltage, process time, and electrolyte concentration on surface structure, chemical composition, and especially photocatalytic activity of the layers was investigated. SEM and AFM studies revealed that pore size and surface roughness of the layers increased with the applied voltage, and the electrolyte concentration. Moreover, the photocatalytic performance of the layers synthesized at medium applied voltages was significantly higher than that of the layers produced at other voltages. About 90% of methylene blue solution was decomposed after 180 min UV-irradiation on the layers produced in an electrolyte with a concentration of 10 g l−1 at the applied voltage of 450 V.  相似文献   

17.
In this paper, a liquid-phase hydrolization method to synthesize nanometer rutile titania directly without transformation from anatase is proposed. By utilizing this method, the particle size of the rutile titania nanoparticles can be controlled by adjusting the reaction conditions, e.g. the concentration of sodium hydroxide solution, reaction temperature, and calcining temperature of the powder. These titania nanoparticles have been used for the preparation of a novel composite insulation coating for magnet wires. First results showed that the lifetime of the modified nanomagnet wire in the inverter-fed motor could be prolonged to eight times compared with the non-modified wire.  相似文献   

18.
In this research nanosized titanium nitride powder was synthesized through reaction of titanium oxide with ammonia gas. The reaction was carried out at a very slow heating rate. Two different TiO2 starting powders contained rutile and anatase phase and differed in initial particle size and surface area. The crystallite size of TiN powders synthesized at 1000 °C was obtained about 40 nm for anatase sample. Surface area and particle size were found to be 19 m2/g, 70 nm for rutile sample and 31 m2/g, 39 nm for anatase sample, respectively. The rutile sample showed an increasing trend in surface area during conversion to the nitride, whilst the anatase sample followed an adverse trend. TiN powder synthesized from anatase had the highest surface area and smallest particle size due to the specification of initial precursor.  相似文献   

19.
TiO2 nanoparticles were synthesized via the laser pyrolysis of titanium tetrachloride-based gas-phase mixtures. In the obtained nanopowders, a mixture of anatase and rutile phases with mean particle size of about 14 nm was identified. Using the thermal heated laser nanopowders, mechanically stable films were produced by immobilizing titania nanopowders on glass substrates (the doctor blading method followed by compression). The photocatalytic activity of the prepared films was tested by the degradation of 4-chlorophenol in an aqueous solution under UV-illumination. By referring to known commercial samples (Degussa P25) similarly prepared, higher photocatalytic efficiency was found for the laser-prepared samples.  相似文献   

20.
Reduction of stoichiometric metal oxide can be reached by two processes: oxygen vacancies or hydrogenation. We present DFT-GGA periodic calculations for the O vacancies in the bulk and selected slabs of TiO2-rutile, TiO2-anatase, and SnO2-rutile as well as their hydrogenation. We focus on the comparison between these structures. Anatase is found more difficult to reduce than rutile. Contrary to the reduced rutile structure which has a high spin state, all the electrons of the reduced anatase are paired. SnO2 is more easily reduced than TiO2. Strongly reduced (1 1 0) surfaces undergo reconstructions. Hydrogenated structures of rutile and anatase show also different patterns. While on the rutile (1 1 0) face, all the H atoms are adsorbed on the bridging O atoms in rows and form bridging OH groups, in the most stable hydrogenated anatase (1 0 0) structure only half of them are located while the other half is bound to the fivefold coordinated Ti surface atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号