首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
Holey fibers (HFs) can be used as amplifier in optical communication systems. These new fiber structures have flexibility to change the fiber parameters such as refractive index of guided mode, air filling factor (AFF), V number, group velocity dispersion (GVD) and numerical aperture, only by the change of the hole size and air-hole spacing. In this paper we will use improved fully vectorial effective index method (IFEIM) to analyze the erbium doped holey fiber amplifier (EDHFA) with hexagonal unit cell. The range that core size can change in any air-hole spacing will determine and the growth of core size in the amplifier character such as maximum gain and optimum length will study. By determination of single mode region the effect of pump power and dopant concentration growth, on the amplifier parameter will define.  相似文献   

2.
We present a novel design approach for realizing holey fibers (HFs) with flat dispersion characteristics and large mode area based on the existence of an artificially defected air-hole ring in the cladding, and on the inclusion of additional defected air holes in the core of the fiber. This unique type of HF can be used for achieving remarkable flat dispersion characteristics as well as a large mode area, which are particularly useful for high-speed data transmission. The validation of the proposed design is done by adopting an efficient full-vectorial finite element method for optical characterization of HFs. The proposed fiber can be employed in reconfigurable optical transmission systems for performing wavelength division multiplexing operation. Typical characteristics of the proposed HF are a flattened dispersion of 6.3 +/- 0.5 ps/km/nm from 1.45 to 1.65 microm and an effective mode area as large as 100 microm2 in the same frequency range.  相似文献   

3.
We report the results of detailed measurements on the Brillouin frequency shift (BFS), gain bandwidth, and gain coefficients of several small-core holey optical fibers (HFs) of both uniform and axially varying structural characteristics and compare these with measurements on more conventional fibers. Our measurements show that the BFS of HFs is first-order proportional to the modal index for light propagating along the fiber and is thus extremely sensitive to its precise structural parameters. Our results highlight the possibility of using distributed Brillouin scattering measurements to perform nondestructive structural characterization of HFs, and the possibility of producing Brillouin-suppressed HFs using controlled structural variation along the fiber length.  相似文献   

4.
We experimentally investigate a flexible fabrication technique for low OH and transmission losses holey fibers with a Ge-doped core and air holes in a silica cladding region. Versatile holey fibers of different size, pitch, and shape of air holes were achieved by controlling the temperature and heating time of the holey fiber preform. In addition, we suppress the OH loss of less than ∼0.323 dB/km at 1383 nm. After fabricating holey fibers, we measure their optical properties including cut-off wavelength, mode field diameter, splicing loss, dispersion, bending loss, and polarization dependent loss based on the size of air holes. The total transmission loss was measured to be ∼0.226 dB/km at 1550 nm by improving the fabrication process. After fabricating optical patch cord based on holey fibers, we measured the long-term stability of the fabricated holey fiber by using the temperature cycling technique for 24 and obtained low power fluctuation of 0.2 dB. We achieve the high quality holey fiber with a low bending loss of ∼0.04 dB/turn under a bending radius of 2.5 mm at 1550 nm. We also obtain a tunable band rejection filter with a number of bending turns.  相似文献   

5.
This paper proposes and demonstrates a novel type of silica index guiding holey fibers (IGHFs) that has two cladding layers at the defective innermost structures. The proposed IGHFs exhibit remarkable chromatic dispersion properties such as nearly-zero and flattened dispersion over a wide spectral range and single mode guidance along with very low confinement loss. The numerical results indicate that 5 air-hole rings of nearly zero ultra-flattened dispersion single mode IGHFs can be designed with desire flattened dispersion of over a 340 nm bandwidth including the entire band of interest with low confinement loss of less than 10−6 dB/m.  相似文献   

6.
An all-fiber dual-parameter sensor based on cascaded long period grating pair fabricated by femtosecond laser and CO2 laser has been proposed and realized both theoretically and experimentally. The resonant wavelengths of LPFGs are 1557.80 nm and 1590.88 nm. In the strain range of 0–400 με, strain sensitivities are ?7.2 pm/με for C-LPFG and ?1.6 pm/με for F-LPFG. In the temperature range of 30–70°C, temperature sensitivities are ?41.1 pm/°C for C-LPFG and ?21.2 pm/°C for F-LPFG. By analyzing the resonant wavelength characterization, the proposed sensor can be efficiently used for dual-parameters measurement with promising application prospect and great research reference value.  相似文献   

7.
热光系数与长周期光纤光栅的温度灵敏度研究   总被引:10,自引:0,他引:10  
利用受温度影响的光纤的本征方程和相位匹配条件,从理论上研究了长周期光纤光栅(LPFGs)的温度响应特性,给出了LPFGs的温度灵敏度的解析表达式。对利用低模序包层模的LPFG进行了实验研究。结果表明,利用不同包层模的LPFGs具有不同的温度灵敏度。分析了光纤的材料热光系数和模的热光系数的差别。单模光纤导模的热光系数接近纤芯的材料热光系数,而包层模的热光系数比包层的材料热光系数大,模序越大,其值越大。适当调整纤芯和包层的热光系数,并选用不同的包层模,可以得到对温度灵敏或不灵敏的LPFGs。  相似文献   

8.
Zhu Z  Brown TG 《Optics letters》2003,28(23):2306-2308
We present a numerical study of stress-induced birefringence in microstructured optical fibers (MOFs), using a finite-element method. MOFs under lateral forces and twists are considered separately. Compared with that in standard single-mode optical fibers, stress-induced linear birefringence in MOFs under a lateral force is reduced with increasing air-hole size, whereas twist-induced circular birefringence in MOFs is enhanced when the air-hole size is small.  相似文献   

9.
温度/应变/扭曲三参量同时测量低成本传感系统   总被引:9,自引:3,他引:6  
提出了一种利用布喇格光纤光栅反射光作信号源、高频CO2激光脉冲写入的长周期光纤光栅和超周期光纤光栅作传感器实现温度、应变和扭曲同时测量的全光栅型低成本强度解调传感方案.文中利用长周期光纤光栅边缘滤波效应实现了温度、应变和扭曲传感信号的实时解调.实验结果表明,其温度和应变的测量灵敏度分别为-0.211 dB/℃和-0.012 dB/10με;而扭曲率的测量灵敏度为0.4394 dB/(rad·m-1),是该法写入普通LPFG的4倍以上.  相似文献   

10.
The effects of high drawing speeds on parameters of holey fibers are presented. A holey fiber preform structure was made by using tube-in-tube method and was drawn at high speeds with an aim of mass production to meet the demand of next generation communication systems. Transmission parameters such as numerical aperture and normalized frequency of the fabricated holey fibers have been measured and compared with theoretical values based on effective index method. Although the fabricated holey fibers were not of high quality, the analyses of the parameters have shown promising outlook for fabrication of such fibers.  相似文献   

11.
多孔微结构光纤中飞秒激光脉冲超连续谱的产生   总被引:21,自引:1,他引:21       下载免费PDF全文
报道了利用800nm飞秒激光脉冲在多孔微结构光纤中产生超连续谱展宽的现象,连续谱展宽范围为440—890nm.基于标量波近似理论对微结构光纤包层的有效折射率和基模的有效面积以及光纤的色散特性进行了计算,发现微结构光纤具有特殊的控制色散和波导特性的能力,对超连续谱展宽的机理进行了初步解释.本文的理论分析和实验结果有较好的一致性,认为即使包层由无序填充气线组成的多孔微结构光纤也可以出现超连续谱展宽效应. 关键词: 多孔微结构光纤 超连续谱 有效折射率 色散  相似文献   

12.
Long-period fiber gratings (LPFGs) are written by use of a focused CO2 laser beam to notch periodically on the surface of optical fibers. Temperature characteristics of the CO2-laser-notched LPFG are investigated in detailed to develop its sensing applications. It is shown that, for such LPFG, temperature sensitivity of resonant wavelength can be increased by creating deeper notches. The coupling from the fundamental core mode to a cladding mode in the LPFG can be enhanced by increasing the ambient temperature. The polarization-dependent loss (PDL) of the LPFG depends strongly on the ambient temperature. Such unique temperature characteristics can be used to solve the cross-sensitivity problem between the temperature and the tensile strain. So, the LPFG is a promising temperature sensor based on the wavelength modulation, on the intensity modulation and/or on the PDL modulation.  相似文献   

13.
光纤布拉格光栅采用非电磁信号测试方式,具有显著的抗电磁干扰以及可嵌入被测结构内部等特性,已成为近些年广受关注的光学应变、温度传感与测试新技术。但在极端条件下(如超低温环境),光纤由于受到其自身材料特性的局限,传感特性不明显甚至限制了其应用。基于结构变刚度的力学増敏方法,本文提出了一种适用于低温区的光纤布拉格光栅温度传感増敏的结构设计方法。研究结果表明:该传感结构可有效感应低温下的温度变化,増敏效果明显;并获得増敏效果随结构材料与几何特性的依赖关系,经过优化可使得光栅区对温度和应变的敏感性大大提高,甚至提高1个数量级。最后,完成了这一増敏结构的设计和制备,实验验证了所提方法的有效性和可靠性。  相似文献   

14.
Kominsky D  Pickrell G  Stolen R 《Optics letters》2003,28(16):1409-1411
A new form of holey optical fiber, the random-hole optical fiber, has been devised. The hole structure is produced by generating bubbles in a powdered silica cladding. The bubbles are then drawn into tubules of random size, location, and length during the fiber-draw process. Although the tubes are not continuous along the length of the fiber, as has been the case in previous holey fibers, the tubes are very long, and the average number of holes in any cross section is large. Waveguide losses of approximately 1.55 dB/m have been measured.  相似文献   

15.
An accurate analysis of the air-guiding in hollow core photonic bandgap fibers with a modified honeycomb air-hole lattice has been carried out. The influence of the hollow core dimension, as well as of the cladding geometric parameters on the confinement loss, the nonlinear coefficient and the single-mode behaviour of the fibers has been investigated through a full-vector modal solver based on the finite element method. Simulation results have shown that confinement loss lower than 0.1 dB/km, a nonlinear parameter lower than 0.01 (W · km)?1 and an effectively single-mode behaviour over a wavelength range of about 150 nm can be achieved with eight air-hole ring modified honeycomb fibers.  相似文献   

16.
Lu F  Deng Y  Knox WH 《Optics letters》2005,30(12):1566-1568
Submillimeter-scale dispersion micromanagement (DMM) is used to generate coherent and stable femtosecond visible pulses in holey fibers as short as 10 mm. The longitudinal variation of the phase-matching conditions for Cerenkov radiation and four-wave mixing explains the results well. We have converted up to 20% of the total input energy to a low-noise solitary wave with a bandwidth up to 50 nm in the range 385-625 nm by using holey fibers with various DMM designs.  相似文献   

17.
基于纤芯失配和光纤布拉格光栅实现温度和应变同时测量   总被引:1,自引:0,他引:1  
童峥嵘  王洁玉  杨秀峰  曹晔 《光学学报》2012,32(12):1206001
基于纤芯失配理论,提出了一种多模单模多模(MSM)结构与光纤布拉格光栅(FBG)级联实现温度和应变同时测量的光纤传感器。利用MSM结构的干涉谱和FBG对温度和应变的不同响应灵敏度,实现了对温度、应变的同时测量。实验结果表明,在20 ℃~80 ℃的温度范围内,MSM结构的干涉谱和FBG的温度灵敏度分别为0.091 nm/℃和0.0102 nm/℃;在0~650 με的应变范围内,应变灵敏度分别为 -0.0013 nm/με和0.0012 nm/με。因此利用敏感矩阵,即可实现对温度和应变的同时测量,且温度和应变的最大测量误差分别为±0.2 ℃和±8.25 με。该结构灵敏度高,结构简单,且不易受电磁等干扰,实验结果具有良好的线性度,在工程领域应用前景良好。  相似文献   

18.
We designed, fabricated, and characterized birefringent holey fibers with zero polarimetric sensitivity to temperature. The sensitivity measurements were carried out in a wide spectral range of 0.68–1.55 μm in fibers with different hole and pitch values and with birefringence induced by a pair of large holes adjacent to the core. Our results show that zero sensitivity to temperature can be obtained at certain wavelengths for the bare fibers with properly adjusted geometrical parameters. Moreover, the spectral measurements of the sensitivity to temperature are in good agreement with the modeling results for all the investigated fibers.  相似文献   

19.
We report a simple fabricating approach to control the mode couplings in long-period fiber gratings (LPFGs) through side exposing fiber to long-pulse-10.6-μm laser from a cheap, internally modulated CO2 tube. By tuning focused-spot size on fibers, not only circularly symmetric mode coupling but also asymmetric mode couplings can be effectively achieved. Simulation of mode profiles in grating cross-section with Finite Element Method (FEM), and LPFG-cladding etching experiment with hydrofluoric acid (HF), support our explanation that asymmetric mode coupling in LPFGs depends on local refractive-index (RI) change within an azimuthally thin cladding layer, resulted from large-spot method induced deep melt flow on fiber surface during CO2 laser irradiation.  相似文献   

20.
Comparative study of large-mode holey and conventional fibers   总被引:2,自引:0,他引:2  
Little information exists regarding how large-mode holey fibers compare, in practical terms, with their conventional counterparts. We present what is to our knowledge the first experimental study of mode area and bend loss for a range of large-mode holey and conventional fibers. It is demonstrated here that large-mode holey fibers exhibit mode areas and bending losses that are comparable to those of conventional fibers at 1.55mu . However, the novel wavelength dependence of the numerical aperture in a holey fiber offers a significant advantage for broadband and short-wavelength applications in which single-mode operation is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号