首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 258 毫秒
1.
Results are presented which show that in the case of the light elements highly ionised species can be detected in laser produced plasmas using a normal incidence spectrograph, the plasmas being formed by picosecond pulses from a high power Nd: glass laser. In particular hydrogenic ions of carbon, oxygen and fluorine have been observed when the incident laser flux density onto a solid target was about 3×1014W/cm2.  相似文献   

2.
实验研究了CO2分子在飞秒强激光脉冲作用下的动力学过程,包括分子取向,隧穿电离和库仑爆炸,激光强度从1×1013W/cm2变化到6×1014W/cm2. 当激光强度小于分子的电离阈值时,CO2分子的非绝热转动激发形成一个相干转动波包,波包演化导致分子沿激光电场方向取向. 激光脉冲结束后,分子取向可以周期性地再现,利用另一束激光可以对取向结构进一步进行修饰. 当激光强度大于分子  相似文献   

3.
Electron-positron pair production in vacuum by a single focused laser pulse and by two counter-propagating colliding focused pulses is analyzed. A focused laser pulse is described using a realistic three-dimensional model based on an exact solution of Maxwell’s equations. In particular, this model reproduces an important property of focused beams, namely, the existence of two types of waves with a transverse electric or magnetic vector (e-or h-polarized wave, respectively). The dependence of the number of produced pairs on the radiation intensity and focusing parameter is studied. It has been shown that the number of pairs produced in the field of a single e-polarized pulse is many orders of magnitude larger than that for an h-polarized pulse. The pulse-intensity dependence of the number of pairs produced by a single pulse is so sharp that the total energy of pairs produced by the e-polarized pulse with intensity near the intensity I S = 4.65 × 1029 W/cm2 characteristic of QED is comparable with the energy of the pulse itself. This circumstance imposes a natural physical bound on the maximum attainable intensity of a laser pulse. For the case of two colliding circularly polarized pulses, it is shown that pair production becomes experimentally observable when the intensity of each beam is I ~ 1026 W/cm2, which is one to two orders of magnitude lower than that for a single pulse.  相似文献   

4.
We observe electric pulses generated in sillenite crystals (Bi12SiO20 and Bi12TiO20) by 100-fs laser pulses at the wavelength of 400 nm (below the band gaps of both crystals). The peak value of the current pulses scales linearly with the intensity of laser pulses up to ∼45 GW/cm2. The direction of the induced current depends on the polarization state of the laser pulse. This polarization dependence and features of the current detection via charge accumulation at the sample electrodes allow us to conclude that the electric pulses are generated due to the linear photogalvanic effect.  相似文献   

5.
Vacuum ultraviolet (VUV) luminescence from a Nd3+:(La1−x,Bax)F3−x (x=0.1) and a Nd3+:LaF3 single crystal grown by the micro-pulling-down method modified for fluoride crystal growth is discussed. Emission resulting from excitation with 157 nm pulses of a F2 laser and by 290 nm femtosecond pulses of a Ti:sapphire laser show that the luminescence spectral and temporal characteristics are similar for both excitation cases and that they have good prospects as a VUV laser material.  相似文献   

6.
The process of low temperature laser excitation of neodymium ion M pair centers in CaF2 crystals at the 4I9/2-4G5/2 optical transition is analyzed. It is shown that maximally entangled Bell’s vacuum-single exciton and vacuum-biexciton states are experimentally prepared when irradiating these crystals by nanosecond laser pulses.  相似文献   

7.
Several techniques exist to obtain brilliant X-ray beams by coherent reflection from relativistic electrons (E e=γ mc 2) with Doppler frequency upshift of 4γ 2. We describe a new approach starting with an ultra-thin solid target. Larger ‘driver’-laser intensities with high contrast are required to produce dense electron sheets. Their acceleration in vacuum results in a transverse momentum component besides the dominant longitudinal momentum component. The counter-propagating ‘production’ laser for optimum Doppler boost in X-ray production by reflection has to be injected opposite to the electron direction and not opposite to the driver laser. Different measures to increase the reflectivity of the electron sheet via laser trapping or free-electron-laser-like micro-bunching are discussed, extending the photon energy into the MeV range. Here, first-order estimates are given.  相似文献   

8.
The coherent reshaping of short duration (2–5 nsec) CO2 laser pulses in a low-pressure (∽ 5 torr), longitudinal discharge CO2 amplifier is experimentally studied in the linear regime for a variable number of gain lengths (αL?7). Single pulses grow considerably in duration as well as amplitude in agreement with theoretical considerations. Analysis of the observed pulse evolution is used to obtain the transverse relaxation parameter T2. Zero-degree pulses {∫+∞-∞E ( z, t) dt = 0} are observed to terminate much of the long tail which occurs in single-pulse amplification. Off-resonant amplification of short-duration pulses is shown to lead to dramatic changes in the zero-degree pulse evolution. Numerical calculations relating to pulse amplification in the nonlinear regime for high-pressure CO2 amplifiers are also presented.  相似文献   

9.
The excitation and ionization of CF3I molecules and their clusters by femtosecond UV laser pulses is studied. It is concluded that the types of excitation of free CF3I molecules and their clusters by femtosecond UV laser pulses are different. The composition and kinetic energy of ion products observed upon the ionization of (CF3I) n clusters by femtosecond pulses are found to differ considerably from those obtained upon ionization by nanosecond pulses. It is shown that the molecular I 2 + ion is produced in reactions induced in (CF3I) n clusters by UV radiation. Using the pump-probe method, we found the two channels of producing I 2 + ions with characteristic times ??1 ?? 1 ps and ??2 ?? 7 ps. A model of the reactions under study proposed in the paper is consistent with our experimental results.  相似文献   

10.
Characteristic K α x rays arising when a metallic target is irradiated by femtosecond infrared pulses that are generated by a terawatt chromium-forsterite laser system (1240 nm, 90 mJ, 80 fs) are studied. The absolute yield (up to 3 × 108 photons/sr pulse) and the coefficient of the transformation of laser radiation to K α radiation (maximum value ≈0.03%) are measured for an iron target. The dependence of the radiation intensity on the angle of incidence of p polarized laser radiation is analyzed. The mechanisms of the production of fast electrons responsible for generating characteristic x rays are discussed.  相似文献   

11.
ArF laser pulse transmission through commercial high purity CaF2 is determined by measuring the energy of each pulse before and behind the sample up to an incident fluence H of 10 mJ/cm2. The steady state transmission of ArF laser pulses decreases with increasing fluence. The related absorption coefficients α st(H) are proportional to H and rationalized by effective 1- and 2-photon absorption coefficients 2.4×10?4 cm?1α eff≤16.8×10?4 cm?1 and 1.7×10?9 cm?W?1β eff≤9.3×10?9 cm?W?1, respectively. The α eff and β eff values increase with the Na content of the CaF2 samples as identified by the fluorescence of Na-related M Na centers at 740 nm. This relation is simulated by a rate equation model describing the ArF laser induced M Na generation in the dark periods between the laser pulses and their annealing during laser irradiation. M Na generation starts with intrinsic 2-photon absorption in CaF2, yielding self-trapped excitons (STE). These pairs of F and H centers move upon thermal activation and the F centers combine with F Na to form M Na centers. M Na annealing occurs by its photo dissociation into a pair of F and F Na centers.  相似文献   

12.
Subpicosecond time resolutions have been obtained in photon echoes when a sample was excited by two nanosecond dye laser pulses with a smooth and broad spectrum. The dye laser was pumped by second harmonics of a Q-switched Nd:YAG laser, and the pulse width was 10 ns. The sample was 3% Nd3+-doped silicate glass, and the center frequency of the dye laser was tuned at 5910 Å on resonance with the 4I92 ? 2G72, 4G52 transition of Nd3+. The homogeneous transverse relaxation time T2 was measured to be 91 ps at 10 K in agreement with the previous measurements by picosecond pulses.  相似文献   

13.
Field-induced ionization and Coulomb explosion of nitrogen   总被引:1,自引:0,他引:1  
Femtosecond-laser field-induced ionization and Coulomb explosion of diatomic nitrogen were systematically investigated using time-of-flight mass and photoelectron spectrometry. Both linearly and circularly polarized femtosecond laser pulses were used at intensities varying from 5×1013 to 2×1015 W/cm2. Strong N2 +, N2 2+, N+, N2+ and N3+ ion signals were observed for horizontally polarized pulses. Moreover, signals from the atomic ions exhibited a double-peak structure. Suppression of ionization was observed for circularly polarized pulses, while for vertically polarized pulses, only N2 + and N2 2+ ions were observed. The angular distributions of the ions were measured under zero-field conditions in the ionization zone. The atomic ions N+, N2+ and N3+ exhibited highly anisotropic distributions, with maxima along the laser polarization vector and zeroes normal to the laser polarization vector. In contrast to the atomic ions, N2 + exhibited a strong isotropic angular distribution. These observations indicate that dynamic alignment is responsible for the observed anisotropic angular distribution of the atomic ions. The kinetic energy spectrum of the photoelectrons is featureless and broad, extending above the ponderomotive potential of the laser pulse. The angular distribution is markedly anisotropic, with a maximum along the laser polarization vector. These observations further support the notion that the field-ionization mechanism is dominant under our experimental conditions. Received: 29 January 2002 / Revised version: 15 March 2002 / Published online: 12 July 2002  相似文献   

14.
We demonstrate laser nitrogen isotope separation, which is based on field-free alignment and angular-dependent ionization of 14N2 and 15N2 isotopologues. A linearly polarized short laser pulse (???~?795?nm, ?????~?60?fs) creates rotational wave packets in the isotopologues, which periodically revive with different revival times as a result of different moments of inertia. Another linearly polarized short laser pulse (???~?795?nm, ?????~?60?fs) ionizes one of the isotopologues selectively as a result of their different angular distributions. In the present experiments, the ion yield ratio R [=I(15N2 +)/I(14N2 +)] can be changed in the range from 0.85 to 1.22, depending on the time delay between the two laser pulses.  相似文献   

15.
Femtosecond pulses of a Cr:forsterite laser are used to study second-and third-harmonic generation in a layer of single-wall carbon nanotubes produced by low-velocity spraying. The harmonic amplitude in our experiments scales as (I p)n as a function of the pump intensity I p, with n=2 and 3 for the second and third harmonics, respectively. This scaling law holds up to pump intensities on the order of 1012W/cm2. The ratio of the maximum signal to the averaged background in the spectra of the second and third harmonics is estimated as 50 and 30, respectively. The second and third harmonics produced by a linearly polarized pump field are also linearly polarized, with their polarization vectors oriented along the polarization direction of the pump field. The capabilities of nonlinear-optical methods for structural and morphological analysis of carbon nanotubes are discussed, as well as ways to create solid-state carbon-nanotube generators of optical harmonic.  相似文献   

16.
Determining optimal temporal pulse shapes is an essential aspect for controlling the nature and the energetic characteristics of the ablation products following laser irradiation of materials on ultra-fast scales. In this respect, adaptive feedback loops based on temporal pulse manipulation have been inserted into a hydrodynamic code. The procedure enables us to reach the theoretical maximal temperature at a certain energy input. Several regimes have been considered with fluences ranging from the ablation threshold (F th=0.34 J/cm2) up to 10 J/cm2, proposing an optimal coupling for laser–solid and laser–plasma interactions in these fluence regimes. We determine shapes of optimal pulses on ultra-short and short scales (up to 42 ps) and forecast optimized interaction scenarios with fundamental control factors difficult to access experimentally. Simulations performed on aluminum reveal that ultra-short pulses are the natural better solution for localizing energy in space and time for FF th. For higher fluences, pulses spread over tens of picoseconds and ended by a final peak enable a better impulsive coupling with the nascent plasma, optimizing its maximal temperature.  相似文献   

17.
Near band-edge illumination of Hg1?xCdxTe (x ≈ 0.2) by short bursts of CO2 laser radiation has been shown to lead to highly nonlinear absorption and saturation. For sufficiently high infrared intensities the transmission through an absorber is enhanced more than three orders of magnitude. The effect should be useful in temporal shaping of high intensity CO2 laser pulses.  相似文献   

18.
Subnanosecond pulses have been produced by optical free induction decay in KCI:KReO4. Here the ν3 vibrational mode of the perrhenate ion (ReO-4) acts as a resonant absorber for the 10.6μm, P(26) CO2 laser line. As the phase relaxation time T2 of the substitutional molecule ion is very small, efficient picosecond pulses can be produced by this medium if faster shuttering can be devised.  相似文献   

19.
We report neutron production by the 2H(d, n)3He reaction induced upon the illumination of a solid nanostructured target by femtosecond laser pulses of intensity 20 PW/cm2 (1 PW = 1015 W). The target was structured through the preliminary illumination by a laser pulse of the same intensity.  相似文献   

20.
The third-order optical nonlinearity, χ (3), is measured in transparent glasses (BK7 and fused silica) and crystals (BaF2 and quartz) using 36-fs, 800-nm laser pulses and the optical Kerr gate (OKE) technique; values are found to lie in the range 1.3–1.7×10-14 esu, in accordance with theoretical estimates. We probe the purely electronic response to the incident ultrashort laser pulse in fused silica and BK7 glass. In BaF2 and quartz, apart from the electronic response we also observe contribution from the nuclear response to the incident ultrashort pulses. We observe oscillatory modulations that persist for ~400 fs. The response of the media (glasses and crystals) to ultrashort pulses is also measured using two-beam self-diffraction; the diffraction efficiency in the first-order grating is measured to be in the range of 0.06–0.13 %. Third harmonic generation due to self-phase matching in the transient grating geometry is measured as a function of temporal delay between the two incident ultrashort pulses, yielding the autocorrelation signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号