首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the effect of the Fermi surface anisotropy (hexagonal warping) on the superconducting pair potential, induced in a three-dimensional topological insulator (TI) by proximity with an s-wave superconductor (S) in presence of a magnetic moment of a nearby ferromagnetic insulator (FI). In the previous studies, similar problem was treated with a simplified Hamiltonian, describing an isotropic Dirac cone dispersion. This approximation is only valid near the Dirac point. However, in topological insulators, the chemical potential often lies well above this point, where the Dirac cone is strongly anisotropic and its constant energy contour has a snowflake shape. Taking into account this shape, we show that a very exotic pair potential is induced on the topological insulator surface. Based on the symmetry arguments we also discuss the possibility of a supercurrent flowing along the S/FI interface, when an S/FI hybrid structure is formed on the TI surface.  相似文献   

2.
Weak topological insulators have an even number of Dirac cones in their surface spectrum and are thought to be unstable to disorder, which leads to an insulating surface. Here we argue that the presence of disorder alone will not localize the surface states; rather, the presence of a time-reversal symmetric mass term is required for localization. Through numerical simulations, we show that in the absence of the mass term the surface always flow to a stable metallic phase and the conductivity obeys a one-parameter scaling relation, just as in the case of a strong topological insulator surface. With the inclusion of the mass, the transport properties of the surface of a weak topological insulator follow a two-parameter scaling form.  相似文献   

3.
We investigate the tunneling conductance on the surface of topological insulator ferromagnet (F)/insulator (I)/superconductor (S) junction where superconducting type is either s- or d-wave paring. Topological insulators (TI) are insulating in bulk but conducting on the surface with the Dirac-fermion-like carriers. In contrast to the Dirac fermions in graphene, relativistic mass of the Dirac fermions in TI can be easily caused by applying magnetic field perpendicular to its surface. In this work, we emphatically focus on the effect of the magnetically-induced relativistic mass on the tunneling conductance of a TI-based F/I/S junction. We find that, due to the effect of spinless fermions as carriers in TI, the behavior of the tunneling conductance in a TI-based NIS junction resembles that in a nonmagnetic graphene-based NIS junction. In case of the d-wave paring F/I/S junction, increasing magnetically-induced relativistic mass changes the zero bias conductance dip (peak) to a zero bias conductance peak (dip). This behavior cannot be observed in a graphene-based F/I/S junction.  相似文献   

4.
Rock‐salt chalcogenide SnTe represents the simplest realization of a topological insulator where a crystal symmetry allows for the appearance of surface metallic states. Here, we theoretically predict that strain, as realized in thin films grown on (001) substrates, may induce a transition to a topological crystalline insulating phase in related lead‐salt chalcogenides. Furthermore, relevant topological properties of the surface states, such as the location of the Dirac cones on the surface Brillouin zone or the decay length of edge states, appear to be tunable with strain, with potential implications for technological devices benefiting from those additional degrees of freedom. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We propose a scheme for a topological insulator field effect transistor. The idea is based on the gate voltage control of the Dirac fermions in a ferromagnetic topological insulator channel with perpendicular magnetization connecting to two metallic topological insulator leads. Our theoretical analysis shows that the proposed device displays a switching effect with high on/off current ratio and a negative differential conductance with a good peak to valley ratio.  相似文献   

6.
We have performed angle-resolved photoemission spectroscopy on Pb(Bi(1-x)Sb(x))2Te4, which is a member of lead-based ternary tellurides and has been theoretically proposed as a candidate for a new class of three-dimensional topological insulators. In PbBi2Te4, we found a topological surface state with a hexagonally deformed Dirac-cone band dispersion, indicating that this material is a strong topological insulator with a single topological surface state at the Brillouin-zone center. Partial replacement of Bi with Sb causes a marked change in the Dirac carrier concentration, leading to the sign change of Dirac carriers from n type to p type. The Pb(Bi(1-x)Sb(x))2Te4 system with tunable Dirac carriers thus provides a new platform for investigating exotic topological phenomena.  相似文献   

7.
We study the effect of magnetic doping at the surface of a three dimensional topological insulator (TI) on emergence of ferromagnetic ordering at the TI-surface assuming the exchange coupling between the Dirac fermions and the dilute magnetic ions. We show that this coupling results in an uniaxial magnetic anisotropy with out-of-plane magnetization direction. It is found that the system under consideration is unstable with respect to a spontaneous uniform magnetization along the easy axis, which is accompanied by opening a gap in a spectrum of the Dirac surface states. In the framework of a mean-field approach, we study the possibility of ferromagnetic order on the magnetically doped surface of TI at different temperatures and positions of the chemical potential.  相似文献   

8.
We report the first measurements of phonon dispersion curves on the (001) surface of the strong three-dimensional topological insulator Bi2Se3. The surface phonon measurements were carried out with the aid of coherent helium beam surface scattering techniques. The results reveal a prominent signature of the exotic metallic Dirac fermion quasiparticles, including a strong Kohn anomaly. The signature is manifest in a low energy isotropic convex dispersive surface phonon branch with a frequency maximum of 1.8 THz and having a V-shaped minimum at approximately 2kF that defines the Kohn anomaly. Theoretical analysis attributes this dispersive profile to the renormalization of the surface phonon excitations by the surface Dirac fermions. The contribution of the Dirac fermions to this renormalization is derived in terms of a Coulomb-type perturbation model.  相似文献   

9.
We study the fractional quantum Hall states on the surface of a topological insulator thin film in an external magnetic field, where the Dirac fermion nature of the charge carriers have been experimentally established only recently. Our studies indicate that the fractional quantum Hall states should indeed be observable in the surface Landau levels of a topological insulator. The strength of the effect will however be different, compared to that in graphene, due to the finite thickness of the topological insulator film and due to the admixture of Landau levels of the two surfaces of the film. At a small film thickness, that mixture results in a strongly nonmonotonic dependence of the excitation gap on the film thickness. At a large enough thickness of the film, the excitation gap in the lowest two Landau levels are comparable in strength.  相似文献   

10.
Four-component massive and massless Dirac fermions in the presence of long range Coulomb interaction and chemical potential disorder exhibit striking fermionic quantum criticality. For an odd number of flavors of Dirac fermions, the sign of the Dirac mass distinguishes the topological and the trivial band insulator phases, and the gapless semimetallic phase corresponds to the quantum critical point that separates the two. Up to a critical strength of disorder, the semimetallic phase remains stable, and the universality class of the direct phase transition between two insulating phases is unchanged. Beyond the critical strength of disorder the semimetallic phase undergoes a phase transition into a disorder controlled diffusive metallic phase, and there is no longer a direct phase transition between the two types of insulating phases.  相似文献   

11.
A new efficient method is proposed for inducing magnetism on the surface of a topological insulator through the deposition of a thin film of an isostructural magnetic insulator whose atomic composition is maximally close to that of the topological material. Such a design prevents the formation of a strong interface potential between subsystems. As a result, the topological state freely penetrates into the magnetic region, where it interacts with the exchange field and gets significantly split at the Dirac point. It is shown that the application of this approach to thin films of a tetradymite-like topological insulator allows realizing the quantum anomalous Hall state with a band gap of several tens of meV.  相似文献   

12.
Transport properties on the surface of a topological insulator (TI) under the modulation of a two-dimensional (2D) ferromagnet/ferromagnet junction are investigated by the method of wave function matching. The single ferromagnetic barrier modulated transmission probability is expected to be a periodic function of the polarization angle and the planar rotation angle, that decreases with the strength of the magnetic proximity exchange increasing. However, the transmission probability for the double ferromagnetic insulators modulated n-n junction and n-p junction is not a periodic function of polarization angle nor planar rotation angle, owing to the combined effects of the double ferromagnetic insulators and the barrier potential. Since the energy gap between the conduction band and the valence band is narrowed and widened respectively in ranges of 0 ≤ 0 〈π/2 and r/2 〈 0 ≤ π, the transmission probability of the n-n junction first increases rapidly and then decreases slowly with the increase of the magnetic proximity exchange strength. While the transmission probability for the n-p junction demonstrates an opposite trend on the strength of the magnetic proximity exchange because the band gaps contrarily vary. The obtained results may lead to the possible realization of a magnetic/electric switch based on TIs and be useful in further understanding the surface states of TIs.  相似文献   

13.
The Dirac cone on a surface of a topological insulator shows linear dispersion analogous to optics and its velocity depends on materials. We consider a junction of two topological insulators with different velocities, and calculate the reflectance and transmittance. We find that they reflect the backscattering-free nature of the helical surface states. When the two velocities have opposite signs, both transmission and reflection are prohibited for normal incidence, when a mirror symmetry normal to the junction is preserved. In this case we show that there necessarily exist gapless states at the interface between the two topological insulators. Their existence is protected by mirror symmetry, and they have characteristic dispersions depending on the symmetry of the system.  相似文献   

14.
The quasilinear bands in the topologically trivial skutterudite insulator CoSb(3) are studied under adiabatic, symmetry-conserving displacement of the Sb sublattice. In this cubic, time-reversal and inversion symmetric system, a transition from trivial insulator to topological point Fermi surface system occurs through a critical point in which massless (Dirac) bands appear, and moreover are degenerate with massive bands. Spin-orbit coupling, while small due to the type of band character, coupled with tetragonal strain opens the gap required to give the topological insulator. The mineral skutterudite (CoSb(3)) is very near the critical point in its natural state.  相似文献   

15.
We show that disorder, when sufficiently strong, can transform an ordinary metal with strong spin-orbit coupling into a strong topological "Anderson" insulator, a new topological phase of quantum matter in three dimensions characterized by disordered insulating bulk and topologically protected conducting surface states.  相似文献   

16.
A magnetoconductivity formula is presented for the surface states of a magnetically doped topological insulator. It reveals a competing effect of weak localization and weak antilocalization in quantum transport when an energy gap is opened at the Dirac point by magnetic doping. It is found that, while random magnetic scattering always drives the system from the symplectic to the unitary class, the gap could induce a crossover from weak antilocalization to weak localization, tunable by the Fermi energy or the gap. This crossover presents a unique feature characterizing the surface states of a topological insulator with the gap opened at the Dirac point in the quantum diffusion regime.  相似文献   

17.
Yunlong Li 《中国物理 B》2021,30(12):127901-127901
Using high-resolution angle-resolved and time-resolved photoemission spectroscopy, we have studied the low-energy band structures in occupied and unoccupied states of three ternary compounds GeBi2Te4, SnBi2Te4 and Sn0.571Bi2.286Se4 near the Fermi level. In previously confirmed topological insulator GeBi2Te4 compounds, we confirmed the existence of the Dirac surface state and found that the bulk energy gap is much larger than that in the first-principles calculations. In SnBi2Te4 compounds, the Dirac surface state was observed, consistent with the first-principles calculations, indicating that it is a topological insulator. The experimental detected bulk gap is a little bit larger than that in calculations. In Sn0.571Bi2.286Se4 compounds, our measurements suggest that this nonstoichiometric compound is a topological insulator although the stoichiometric SnBi2Se4 compound was proposed to be topological trivial.  相似文献   

18.
Using femtosecond time- and angle-resolved photoemission spectroscopy, we investigated the nonequilibrium dynamics of the topological insulator Bi2Se3. We studied p-type Bi2Se3, in which the metallic Dirac surface state and bulk conduction bands are unoccupied. Optical excitation leads to a metastable population at the bulk conduction band edge, which feeds a nonequilibrium population of the surface state persisting for >10 ps. This unusually long-lived population of a metallic Dirac surface state with spin texture may present a channel in which to drive transient spin-polarized currents.  相似文献   

19.
We have performed angle-resolved photoemission spectroscopy on TlBiSe?, which is a member of the ternary chalcogenides theoretically proposed as candidates for a new class of three-dimensional topological insulators. We found direct evidence for a nontrivial surface metallic state showing an "X"-shaped energy dispersion within the bulk-band gap. The present result unambiguously establishes that TlBiSe? is a strong topological insulator with a single Dirac cone at the Brillouin-zone center. The observed bulk-band gap of 0.35 eV is the largest among known topological insulators, making TlBiSe? the most promising material for studying room-temperature topological phenomena.  相似文献   

20.
We study the electronic structure and spin polarization of the surface states of a three-dimensional topological insulator thin film modulated by an electrical potential well. By routinely solving the low-energy surface Dirac equation for the system, we demonstrate that confined surface states exist, in which the electron density is almost localized inside the well and exponentially decayed outside in real space, and that their subband dispersions are quasilinear with respect to the propagating wavevector. Interestingly, the top and bottom surface confined states with the same density distribution have opposite spin polarizations due to the hybridization between the two surfaces. Along with the mathematical analysis, we provide an intuitive, topological understanding of the effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号