首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Time-resolved excitation and emission spectra of SrF2: Er3+ upon selective excitation with synchrotron radiation in the VUV and ultrasoft x-ray ranges at T = 8 K were studied. The VUV luminescence of SrF2: Er3+ derives from high-energy interconfiguration 4f105d-4f11 transitions in the Er3+ ion. The VUV emission spectrum revealed, in addition to the 164.5-nm band (millisecond-range kinetics), a band at 146.4 nm (with a decay time of less than 600 ps). The formation of excitation spectra for the f-f and f-d transitions in the Er3+ ion is discussed.  相似文献   

2.
The photoluminescence and photoexcitation spectra as well as the luminescence decay kinetics of Er3+ ions in the visible ultraviolet and vacuum ultraviolet (VUV) regions have been studied by the method of low-temperature, time-resolved VUV-spectroscopy on excitation by synchrotron radiation. In the VUV spectral region of the luminescence of SrF2:1% Er3+, the 146.5-nm band with a time of decay of less than 0.6 nsec was revealed together with the well-known emission band at 164.3 nm (decay constant in the microsecond range). Its possible nature is discussed. The specific features of the formation of photoexcitation spectra of the f-f and f-d transitions in the Er3+ ion are considered. Competition between the processes of excitation of f-f and d-f luminescence has been revealed. It manifests itself in the inverse relationship of their photoexcitation spectra in a range of energies of incident photons that are close to the position of the 4fn−15d configuration levels. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 72, No. 4, pp. 519–523, July–August, 2005.  相似文献   

3.
LaPO4 single crystals lightly doped with Er3+, and codoped with Er3+ and Yb3+ have been grown by spontaneous nucleation in a lead phosphate flux. Absorption and luminescence spectra have been measured in the visible and near-IR regions and the excited state dynamics has been studied upon pulsed laser excitation. The obtained results have allowed the evaluation of the effective emission cross-sections around 1.5 μm, that have been found to be similar to important oxide laser crystals doped with Er3+. Efficient visible upconversion has been observed upon excitation at 980 nm in the codoped crystals. This behaviour is attributed to Yb3+-Er3+ energy transfer processes.  相似文献   

4.
Well oil-dispersible SrF2:Yb3+/Er3+ upconversion (UC) nanocrystals (NCs) were easily synthesized in the water-ethanol-oleic acid-sodium oleate complex systems. The as-prepared NCs all show size-uniformity, and their sizes, morphologies can be controlled by varying the solvent and reaction time, and rectangular SrF2:Yb3+/Er3+ nanosheets with the sizes of 5-25 nm can be obtained. The possible mechanism on the nucleation and growth of nanocrystals occurred at the oleic acid/sodium oleate interface was also discussed. The size and morphology dependent UC luminescence behaviors have been observed in SrF2:Yb3+/Er3+ NCs, and their UC luminescence transitions were proposed. The as-prepared UC nanocrystals are expected to fulfill the demand for biological applications.  相似文献   

5.
In the paper thermal treatment investigations of the MF2 (M = Ca, Sr, Ba) fine powders mechanochemically doped with Er3+ ions using electron paramagnetic resonance and X-ray diffraction are presented. It is shown that the prepared samples are found in the nonequilibrium metastable state characterized by the high concentration of the cationic vacancies and prevalence of the cubic symmetry-doped Er3+ ion centers. Vacancies formed when the deformation exceeds the elastic limit serve both as the means for a nonlocal charge compensation and a route for mechanically activated diffusion. Annealing brings the powders to the ground state with the most of the vacancies healed and the trigonal symmetry of the impurity Er3+ centers in SrF2 and BaF2 due to the local compensation by the interstitial fluorine ion.  相似文献   

6.
Starting from previous investigations in LiNbO3 bulk crystals, we studied the optical properties of Er3+ ions in Ti:LiNbO3 channel waveguides and investigated the waveguide-specific lattice environment of the Er3+ ions (“sites”) caused by the doping method used and the presence of a large number of Ti4+ ions. For that purpose the method of combined excitation–emission spectroscopy was applied for the first time to waveguides at low temperatures. Comparing the spectroscopic results obtained for the green, red, and near-IR luminescence (λ≈550, ≈650 and ≈980 nm) under direct (450 nm), 2-step (980 nm), and 3-step (1.5 μm) laser excitation, we found several distinguishable Er3+ sites which in terms of energy levels and relative numbers are similar to those in bulk material, but exhibit significantly different up-conversion efficiencies and strongly inhomogeneously broadened transitions. Moreover, we were able to distinguish isolated and cluster Er3+ sites by their characteristic excitation and emission transition energies and studied the respective excitation/relaxation channels. The cluster sites are most efficient in the up-conversion process, especially under 3-step excitation. Using accepted microscopic models for Er3+ and Ti4+ incorporation into the LiNbO3 crystal lattice, the site distribution and up-conversion mechanisms are elucidated and their consequences for laser applications in different spectral regions are discussed. Received: 16 November 2000 / Published online: 21 March 2001  相似文献   

7.
肖凯  杨中民  冯洲明 《物理学报》2007,56(6):3178-3184
研究了Er3+离子掺杂钡镓锗玻璃的吸收光谱、拉曼光谱和上转换光谱.分析了Er3+离子在钡镓锗玻璃中的上转换发光机理.结果表明:玻璃的最大声子能量为828cm-1,紫外截止波长为275nm.采用800nm和980nmLD激发玻璃样品,在室温下观察到强烈的上转换绿光和红光发射.随着Er3+离子浓度的增加,绿光发光强度先增加后减小,而红光发光强度呈单调递增趋势.能量分析表明:800nmLD激发产生的绿光主要源于Er3+离子4I13/2能级的激发态吸收过程;红光发射主要源于Er3+离子4I13/2能级与4I11/2能级之间的能量转移过程.980nmLD激发产生的绿光主要源于Er3+离子4I11/2能级之间的能量转移过程;而红光发射主要源于Er3+离子4I13/2能级与4I11/2能级之间的能量转移过程和4I13/2能级的激发态吸收过程.通过量子效率分析,发现采用800nmLD激发Er3+离子掺杂浓度为1mol% 的样品时,上转换绿光发光效率最高. 关键词: 上转换发光机理 3+离子掺杂')" href="#">Er3+离子掺杂 钡镓锗玻璃  相似文献   

8.
Yb3+ and Er3+ co-doped YAB powders were prepared by sol-gel method. The structure and fluorescence properties were investigated. XRD pattern indicated that the single phase was obtained at 1150°C and the structure belonged to rhombohedral. Under 379 nm excitation, two emissions around 983 nm and 1531 nm were observed and the effect of Yb3+ ion concentration on the emission intensity was discussed. The energy transfer was observed under 930 nm excitation and the energy transfer efficiencies for all samples were calculated. The lifetimes of 2 F 5/2 level of Yb3+ ion and 4 I 13/2 level of Er3+ ion were measured and the effect of Yb3+ ion concentration on the lifetime was also discussed. The results indicated that there was an additional mechanism for the decay of 4 I 13/2 level in powder samples. The Yb3+ and Er3+ co-doped YAB powders should be a potential candidate for ceramic laser materials.  相似文献   

9.
Er3+-doped oxyfluorotellurite glasses with four different concentrations of Er3+ ions have been prepared and investigated their thermal, optical absorption, excitation and luminescence properties. From the DSC spectra, glass transition and onset of crystallization temperatures have been found. Judd-Ofelt intensity parameters have been derived from the absorption spectrum and are in turn used to calculate radiative properties for the important luminescent levels of Er3+ ions. The calculated radiative properties are comparable to experimental values. The glasses show intense green and weak red emission under normal excitation with 451 nm. The decrease in emission intensities and lifetimes of the 4S3/2 level with concentration of Er3+ ions has been explained as due to energy transfer processes between Er3+ ions. The stimulated emission cross-sections and quantum efficiencies of the green and infrared emissions have been determined. The results indicate that the glasses may be suitable for use as a laser medium in making solid-state green laser by normal pumping route and as laser medium and optical amplifier in the 1.5 μm region.  相似文献   

10.
Abstract

The optical properties of nominally pure and Er3+- or Pr3+ -doped yttria-stabilized zirconia single crystals were investigated under UV light excitation. In the excitation spectra of both types of doped crystals, a broad UV band is observed. Under excitation with light of different wavelengths inside this band, the luminescence features of the doped crystals are different. YSZ: Pr3+ samples exhibit the characteristic 4f → 4f emission of the Pr3+ ions. In YSZ: Er3+ crystals, both the Er3+ ion and the intrinsic luminescence are observed. Host to Er3+ ion radiative energy-transfer is also demonstrated. No dependence of the transfer process with the excitation wavelength was found. These results suggest that the UV band in Er3+ -doped crystals is associated with the lattice-dopant ion interaction rather than with the 4f5d interconfigurational band of the Er3? ions.  相似文献   

11.
The individual sites present in ThO2 doped with Eu3+ and Er3+ have been studied by site selective spectroscopy. A cubic site corresponding to a rare earth charge compensated distantly and two sites having local charge compensation have been identified. One of the locally compensated sites is present only at moderate temperature while the other is formed at higher temperatures and is stable to high temperatures. The measurements are related to catalytically excited fluorescence of ThO2, previous luminescence measurements, and magnetic resonance experiments that observe the presence of local F_ charge compensation of rare earth dopants.  相似文献   

12.
The phenomenon of frequency upconversion (UC) is observed in Er3+:Yb3+:SrAl2O4 powders prepared by combustion synthesis. Strong UC emission at the green (bands peaked at 521, 538, 547, and 562 nm) and weak UC emission at the red (bands peaked at 659 and 682 nm) corresponding to 4f–4f transitions of Er3+ were observed when the samples were irradiated with near-infrared laser excitation at ~980 nm. Saturation of UC emission is observed for concentrations of 1.5 wt.% of Er3+ and 1.5 wt.% of Yb3+. The green-to-red intensity ratio, on the other hand, increases linearly with Er3+ concentration (Er3+ concentration varying from 0.5 to 1.5 wt.%) while keeping Yb3+ concentration fixed (at 1.5 wt.%). The green UC decay time was measured and Er3+–Er3+ interaction was suggested as a possible mechanism to explain the luminescence quenching effect observed.  相似文献   

13.
14.
Four near-stoichiometric lithium niobate (NSLN) crystals codoped with Er3+ (1 mol%) and MgO (0, 0.5, 1.0, and 2.0 mol%) were grown from K2O-based flux in air using top seeded solution growth technique. The [Li]/[Nb] ratio, estimated from the blueshift of ultraviolet absorption edge, is 97.2% in NSLN:Er. MgO; codoping can increase the segregation coefficient of Er3+ in NSLN:Er:MgO crystal. The photorefractive damage threshold is enhanced by three orders of magnitude for NSLN:Er codoped with 1 mol% MgO, it coincides with the peak shift of OH absorption spectrum from 3481 to 3535 cm−1. Judd–Ofelt theory based on absorption spectra is used to analyze the influence of MgO concentration on the Judd–Ofelt intensity parameter, transition strength, fluorescence branching ratio, and stimulated emission cross section. From the time-resolved emission spectra and the comparison among emission spectra, two Er3+ crystal-field sites are ascertained in NSLN:Er codoped with 2 mol% MgO, this coincides with the bimodal structure in X-ray photoelectron spectrometry spectra. The upconversion processes under pulse excitation is proposed based on the pump energy dependence and decay kinetics. The distribution of Er3+-clustered sites in NSLN:Er:MgO series is discussed based on the nonexponential decay curves monitored at 550 nm under two-photon excitation.  相似文献   

15.
NaYF4:Yb3+, Er3+ nanoparticles were successfully prepared by a polyol process using diethyleneglycol (DEG) as solvent. These NaYF4:Yb3+, Er3+ nanoparticles can be coated with mesoporous silica using nonionic triblock copolymer EO20PO70EO20 (P 123) as structure-directing agent and other materials. The composites can load ibuprofen and release the drug in the phosphate buffer solution (PBS). The composites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen absorption/desorption isotherms, fluorescence spectra, and UV/Vis absorption spectra, respectively. The composites have the mesoporous structure. In addition, the composites emit red fluorescence (from Er3+) under 980 nm near infrared laser excitation, which can be used as fluorescent probes in the drug-delivery system.  相似文献   

16.
Cubic phase Lu2O3:Er3+/Yb3+ nanocrystal phosphors were prepared by sol–gel method. Fourier transform infrared (FT-IR) spectra were measured to evaluate the vibrational feature of the samples. Green and red radiations were observed upon 980 nm diode laser excitation. Laser power and Er3+ or Yb3+ doping concentration dependence of upconversion luminescence were studied to understand upconversion mechanisms. Excited state absorption, cross relaxation and energy transfer processes are the possible mechanisms for the visible emissions.  相似文献   

17.
Erbium photoluminescence in GaN:Er was studied with above-band-gap excitation, provided by a He–Cd laser and below-band-gap excitation by a tunable Ti–Sa laser. The spectra obtained with these two lasers exhibit different spectral shapes. When both lasers are used at the same time, we observe that the Er3+ photoluminescence induced by each of the lasers is partly quenched by the illumination of the other laser. In this experiment, one of the lasers is modulated and a lock-in amplifier is used to filter the corresponding photoluminescence signal. The spectra recorded this way are found to be linear combinations of spectra obtained with each of the lasers used separately. This effect is explained by the presence of defects mediating the excitation towards the Er3+ ions. These defects act as electron traps, which can be populated by one specific laser excitation and are photo-ionized by the other laser leading to a large quenching of Er3+ emission.  相似文献   

18.
The photoluminescence (PL) spectra and kinetics of erbium-doped layers of silicon nanocrystals dispersed in a silicon dioxide matrix (nc-Si/SiO2) are studied. It was found that optical excitation of nc-Si can be transferred with a high efficiency to Er3+ ions present in the surrounding oxide. The efficiency of energy transfer increases with increasing pumping photon energy and intensity. The process of Er3+ excitation is shown to compete successfully with nonradiative recombination in the nc-Si/SiO2 structures. The Er3+ PL lifetime was found to decrease under intense optical pumping, which implies the establishment of inverse population in the Er3+ system. The results obtained demonstrate the very high potential of erbium-doped nc-Si/SiO2 structures when used as active media for optical amplifiers and light-emitting devices operating at a wavelength of 1.5 μm.  相似文献   

19.
The dependence of the selective emission (SE) spectra of erbium oxide (Er2O3) in the visible and near-IR spectral ranges on the laser excitation intensity at a wavelength of 10.6 μ m is experimentally studied. The intensity ratio for the Er3+ electronic and vibronic transitions in the SE spectra is varied with an increase in the laser intensity to 10 kW/cm2. The mechanism for the multiphonon fluctuation excitation of electronic states and a possibility for the SE application in the observation of the thermo-photo-laser effect are discussed.  相似文献   

20.
郑海兴  吴光照  干福熹 《物理学报》1985,34(12):1582-1594
测定了氟化物、氟磷酸盐和磷酸盐玻璃中Er3+离子的吸收、荧光和激发光谱,解释了基质玻璃对Er3+离子发光的影响。进一步研究了在这三种基质玻璃中Er3+离子发光的浓度效应和温度效应,讨论了Er3+离子内和离子间的能量转移过程。 关键词:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号