首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A standard rotating drum with a modified sampling train (RD), a vortex shaker (VS), and a SSPD (small-scale powder disperser) were used to investigate the emission characteristics of nano-powders, including nano-titanium dioxide (nano-TiO2, primary diameter: 21 nm), nano-zinc oxide (nano-ZnO, primary diameter: 30–50 nm), and nano-silicon dioxide (nano-SiO2, primary diameter: 10–30 nm). A TSI SMPS (scanning mobility particle sizer), a TSI APS (aerodynamic particle sizer), and a MSP MOUDI (micro-orifice uniform deposit impactor) were used to measure the number and mass distributions of generated particles. Significant differences in specific number and mass concentration or distributions were found among different methods and nano-powders with the most specific number and mass concentration and the smallest particles being generated by the most energetic SSPD, followed by VS and RD. Near uni-modal number or mass distributions were observed for the SSPD while bi-modal number or mass distributions existed for nano-powders except nano-SiO2 which also exhibited bimodal mass distributions. The 30-min average results showed that the mass median aerodynamic diameter (MMAD) and number median diameter (NMD) of the SSPD ranged 1.1–2.1 μm and 166–261 nm, respectively, for all three nano-powders, which were smaller than those of the VS (MMAD: 3.3–6.0 μm and NMD: 156–462 nm), and the RD (MMAD: 5.2–11.2 μm and NMD: 198–479 nm). For nano-particles (electric mobility diameter < 100 nm), specific mass concentrations were nearly negligible for all three nano-powders and test methods. Specific number concentrations of nano-particles were low for the RD tester but were elevated when more energetic VS and SSPD testers were used. The quantitative size and concentration data obtained in this study is useful to elucidate the field emission and personal exposure data in the future provided that particle loss in the generation system is carefully assessed.  相似文献   

2.
Superparamagnetic iron oxide nanoparticles are used in diverse applications, including optical magnetic recording, catalysts, gas sensors, targeted drug delivery, magnetic resonance imaging, and hyperthermic malignant cell therapy. Combustion synthesis of nanoparticles has significant advantages, including improved nanoparticle property control and commercial production rate capability with minimal post-processing. In the current study, superparamagnetic iron oxide nanoparticles were produced by flame synthesis using a coflow flame. The effect of flame configuration (diffusion and inverse diffusion), flame temperature, and additive loading on the final iron oxide nanoparticle morphology, elemental composition, and particle size were analyzed by transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), energy dispersive spectroscopy (EDS), and Raman spectroscopy. The synthesized nanoparticles were primarily composed of two well known forms of iron oxide, namely hematite αFe2O3 and magnetite Fe3O4. We found that the synthesized nanoparticles were smaller (6–12 nm) for an inverse diffusion flame as compared to a diffusion flame configuration (50–60 nm) when CH4, O2, Ar, and N2 gas flow rates were kept constant. In order to investigate the effect of flame temperature, CH4, O2, Ar gas flow rates were kept constant, and N2 gas was added as a coolant to the system. TEM analysis of iron oxide nanoparticles synthesized using an inverse diffusion flame configuration with N2 cooling demonstrated that particles no larger than 50–60 nm in diameter can be grown, indicating that nanoparticles did not coalesce in the cooler flame. Raman spectroscopy showed that these nanoparticles were primarily magnetite, as opposed to the primarily hematite nanoparticles produced in the hot flame configuration. In order to understand the effect of additive loading on iron oxide nanoparticle morphology, an Ar stream carrying titanium-tetra-isopropoxide (TTIP) was flowed through the outer annulus along with the CH4 in the inverse diffusion flame configuration. When particles were synthesized in the presence of the TTIP additive, larger monodispersed individual particles (50–90 nm) were synthesized as observed by TEM. In this article, we show that iron oxide nanoparticles of varied morphology, composition, and size can be synthesized and controlled by varying flame configuration, flame temperature, and additive loading.  相似文献   

3.
Obtaining cost-effective iron (oxyhydr)oxide nanocrystallines is the essential prerequisite for their future extensive applications in environmental remediation, such as the removal of heavy metals from contaminated waters. Here, various phases of iron (oxyhydr)oxide nanocrystallines were simply synthesized from the phase-controlled transformation of amorphous hydrous ferric- or ferrous-oxide in thermal solution with a certain ethanol/water ratio and with the presence of oleic acid. According to this method, goethite nanorods in diameter of 3–4 nm, hematite nanocubes sized 20–30 nm, and magnetite nanoparticles in diameter of 6–7 nm were successfully obtained. The final products of this transformation can be conveniently controlled by adjusting the reaction parameters, such as pH, temperature, and ethanol/water ratio. Due to the enhanced specific surface area and probably the modifications of the surface structure of nanocrystallines, the as-synthesized goethite nanorods and magnetite nanoparticles demonstrated extremely strong As(III) affinity, with 5.8 and 54 times of As(III) adsorption, respectively, higher than the micron-sized relatives. The cost-effective feature of as-synthesized nanocrystallines and their remarkably enhanced affinity toward arsenic made them potentially applicable for the removal of arsenic and such like heavy metals from the contaminated environment.  相似文献   

4.
Magnetic iron oxide nanoparticles (IONP) are currently used for various neurobiological applications. To investigate the consequences of a treatment of brain cells with such particles, we have applied dimercaptosuccinate (DMSA)-coated IONP that had an average hydrodynamic diameter of 60 nm to oligodendroglial OLN-93 cells. After exposure to 4 mM iron applied as DMSA–IONP, these cells increased their total specific iron content within 8 h 600-fold from 7 to 4,200 nmol/mg cellular protein. The strong iron accumulation was accompanied by a change in cell morphology, although the cell viability was not compromized. DMSA–IONP treatment caused a concentration-dependent increase in the iron-dependent formation of reactive oxygen species and a decrease in the specific content of the cellular antioxidative tripeptide glutathione. During a 16 h recovery phase in IONP-free culture medium following exposure to DMSA–IONP, OLN-93 cells maintained their high iron content and replenished their cellular glutathione content. These data demonstrate that viable OLN-93 cells have a remarkable potential to deal successfully with the consequences of an accumulation of large amounts of iron after exposure to DMSA–IONP.  相似文献   

5.
Integrated magnetic sensors based on niobium dc SQUID (Superconducting Quantum Interference Device) for nanoparticle characterizations are presented. The SQUIDs consists of two Dayem bridges of 90 nm × 250 nm and loop area of 4, 1, and 0.55 μm2. The devices are realized by using an e-beam lithography nano-fabrication process which can directly pattern the devices in an electron-positive resist and then transferred to a 20 nm single niobium layer by a lift-off post-process. The SQUIDs were designed to have a hysteretic current–voltage characteristic in order to work as a magnetic flux-current transducer. The presence of an integrated niobium coil, tightly coupled to the SQUID, allows us to easily excite the SQUID and to flux bias the SQUID at its optimal working point. Current–voltage characteristics, critical current as a function of the external magnetic field and switching current distributions were performed at liquid helium temperature. A critical current modulation of about 20% and a current-magnetic flux transfer coefficient (responsivity) of 30 μA/Φ0 have been obtained, resulting in a magnetic flux resolution better than 1 mΦ0. The authors performed preliminary measurements with and without iron oxide nanoparticles on the SQUID loop in order to show the device sensitivity in view of nano-magnetism applications. It was showed that the presence of magnetic nanoparticles can be easily detected and the magnetic relaxation curve measured.  相似文献   

6.
A combined study of the surface nanostructure and electrical characteristics of iron thin films prepared on naturally passivated silicon wafers is presented. By means of conductive-scanning force microscopy, the influence of the substrate temperature during film preparation on both surface morphology and conductivity response is investigated. In addition, magnetic properties of these films are reported and correlated with the nanostructural properties. Films prepared at 200 K show granular core–shell magnetic behaviour exhibiting exchange bias. Both conductive and magnetic data indicate that samples prepared at low temperature behave as a percolated network of nanometric metallic iron clusters (with typical sizes of 20 nm) interconnected by oxidized chains (of 10 nm in diameter), showing an excellent system for nanotechnological exchange bias applications.  相似文献   

7.
Zero valent iron nanoparticles are of increasing interest in clean water treatment applications due to their reactivity toward organic contaminants and their potential to degrade a variety of compounds. This study focuses on the effect of organophosphate stabilizers on nanoparticle characteristics, including particle size distribution and zeta potential, when the stabilizer is present during nanoparticle synthesis. Particle size distributions from DLS were obtained as a function of stabilizer type and iron precursor (FeSO4·7H2O or FeCl3), and nanoparticles from 2 to 200 nm were produced. Three different organophosphate stabilizer compounds were compared in their ability to control nanoparticle size, and the size distributions obtained for particle volume demonstrated differences caused by the three stabilizers. A range of stabilizer-to-iron (0.05–0.9) and borohydride-to-iron (0.5–8) molar ratios were tested to determine the effect of concentration on nanoparticle size distribution and zeta potential. The combination of ferrous sulfate and ATMP or DTPMP phosphonate stabilizer produced stabilized nanoparticle suspensions, and the stabilizers tested resulted in varying particle size distributions. In general, higher stabilizer concentrations resulted in smaller nanoparticles, and excess borohydride did not decrease nanoparticle size. Zeta potential measurements were largely consistent with particle size distribution data and indicated the stability of the suspensions. Probe sonication, as a nanoparticle resuspension method, was minimally successful in several different organic solvents.  相似文献   

8.
Citric-acid-coated magnetite nanoparticles for biological applications   总被引:1,自引:0,他引:1  
Water-based magnetic fluids, generally intended for biomedical applications, often have various coating molecules that make them stable and compatible with biological liquids. Magnetic fluids containing iron oxide particles have been prepared by a co-precipitation method, using citric acid as stabilizer. The magnetic particles of the magnetic fluids were obtained by chemical precipitation from ferric ( FeCl3) and ferrous salts ( FeSO4 or FeCl2) in alkali medium (ammonia hydroxide). Citric acid was used to stabilize the magnetic-particle suspension. Physical tests were performed in order to determine various microstructural and rheological features. Transmission electron microscopy was the main investigation method for assessing the magnetic-particle size. The dimensional distribution of the magnetic-particle physical diameter was analyzed using the box-plot statistical method while infrared absorption spectra were used to study the colloidal particle structure. The magnetic-fluid density (picnometric method), viscosity (capillary method) and surface tension (stalagmometric method) were measured using standard methods.  相似文献   

9.
The evidence of the change of the complex refractive index function E(m) of carbon and iron nanoparticles as a function of their size was found from two-color time-resolved laser-induced incandescence (TiRe-LII) measurements. Growing carbon particles were observed from acetylene pyrolysis behind a shock wave and iron particles were synthesized by pulse Kr–F excimer laser photo-dissociation of Fe(CO)5. The magnitudes of refractive index function were found through the fitting of two independently measured values of particle heat up temperature, determined by two-color pyrometry and from the known energy of the laser pulse and the E(m) variation. Small carbon particles of about 1–14 nm in diameter had a low value of E(m)∼0.05–0.07, which tends to increase up to a value of 0.2–0.25 during particle growth up to 20 nm. Similar behavior for iron particles resulted in E(m) rise from ∼0.1 for particles 1–3 nm in diameter up to ∼0.2 for particles >12 nm in diameter.  相似文献   

10.
Summary Iron particles, encapsulated by graphite layers, were produced by means of the Kratschmer arc discharge method in an iron pentacarbonyl atmosphere. The M?ssbauer effect is dominated by the vibration of the particles as a whole. Superparamegnetism is dominant for iron oxide particles. No endohedral iron fullerenes were observed, contrary to a previous report. Paper presented at ICAME-95, Rimini, 10–16 September 1995.  相似文献   

11.
The preparation and application of rod-shaped core–shell structured Fe3O4–Au nanoparticles for immunomagnetic separation and sensing were described for the first time with this study. To synthesize magnetic gold nanorod particles, the seed-mediated synthetic method was carried out and the resulting nanoparticles were characterized with transmission electron microscopy (TEM), ultraviolet visible spectroscopy (UV–Vis), energy-dispersive X-ray (EDX), and X-ray diffraction (XRD). Magnetic properties of the nanoparticles were also examined. Characterization of the magnetic gold nanorod particles has proven that the resulting nanoparticles were composed of Fe3O4 core and the gold shell. The rod-shaped gold-coated iron nanoparticles have an average diameter of 16 ± 2 nm and an average length of about 50 ± 5 nm (corresponding aspect ratio of 3). The saturation magnetization value for the magnetic gold nanorod particles was found to be 37 emu/g at 300 K. Rapid and room temperature reaction synthesis of magnetic gold nanorod particles and subsequent surface modification with E. coli antibodies provide immunomagnetic separation and SERS application. The analytical performance of the SERS-based homogenous sandwich immunoassay system with respect to linear range, detection limit, and response time is also presented.  相似文献   

12.
The electrochemical synthesis of alpha Fe2O3 nanoparticles was performed using quaternary ammonium salts viz. TPAB, TBAB and TOAB in an organic medium by optimizing current density and molar concentration of the ligand. The role of ligands in the formation of α phase, structure and magnetic properties was investigated in details. The effect of increasing chain length on the particle size confirmed that as the chain length increases from propyl to octyl, the particle size decreases. X-ray diffraction spectra of as prepared samples and TEM analysis confirmed the amorphous nature of iron oxide. TEM showed beads of iron oxide joined together with a size distribution in the range of 6–30 nm. The Mossbauer studies also support this observation that for the lowest particle size, the line width is broader which successively reduces with increase in particle size. Iron oxide capped with TOAB indicated superparamagnetic nature at room temperature. The resultant internal magnetic field of 506 mm/s due to hyperfine splitting clearly established the formation of α-Fe2O3 The infrared spectroscopy and pH measurements revealed the binding of tetra alkyl ligand with iron oxide. The IR spectra and the increase in basicity of as prepared samples confirmed the formation of hydrated iron oxide. Above 800°C the spectra indicated only iron oxide. Surface area obtained by BET method was 205 m2/g.  相似文献   

13.
Tropical soils typically retain high amounts of iron oxides and some of them are magnetic, in the sense that their spontaneous magnetization σ > 1JT-1 kg-1. The two major orders forming on mafic domains, namely, dusky red Oxisol and Alfisol, generically referred to as terrae rossae, are the most representative magnetic soils and cover as much as 3.9%(∼330 000 km2 of the Brazilian land area. In this paper, an up‐to‐date overview is presented, dealing with selected magnetic soils forming on four representative examples of mafic lithology. Some aspects of their iron oxide mineralogy and field and laboratory methodologies of study are discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Static magnetic properties of a large variety of magnetic fluids with magnetite particles is studied. A qualitative study of magnetization curves was performed to establish the influence of interactions or the presence of agglomerations in each sample. Improved equations for magneto-granulometric analysis, for ideal ferrofluids, were proposed. Better results for the mean magnetic diameter than in the case of using the known equations were obtained. A quantitative study using several models for ideal and interacting particles was performed to select the best method and dimensional distribution function for magneto-granulometric analysis as well as for accurately determining macroscopic quantities of samples (initial susceptibility, saturation magnetization, particle number density or magnetic volume fraction) and properties of nanoparticles (mean magnetic diameter, thickness of the nonmagnetic layer and particle distribution). A new model for magneto-birefringence was proposed and discussed as well as applied for diluted and concentrated ferrofluids. The Langevin behaviour of samples was investigated and compared with the investigation based on magnetic properties. Nanoparticles parameters like mean “magneto-optical” diameter, effective anisotropy constant, Shliomis diameter and the real part of the electrical permittivity of particles were accurately determined. Received 18 July 1999 and Received in final form 13 January 2000  相似文献   

15.
Using multi-group diffusion equation and eigenfunction expansion method, the results for time- and energy-dependent fast neutron spectra are reported for an infinite iron assembly. The nuclear cross-sections used are taken from vitamin-C nuclear data file. The results are presented at short times (0–50 nsec) as well as at large times (50–500 nsec) after the injection of a mono-energetic pulse of 14.47 MeV. Following the pulse, the time behaviour of neutrons corresponding to different energy groups has been discussed. The values of mean slowing down times and of most probable times have been obtained for each energy group.  相似文献   

16.
We biosynthesized iron oxide nanoparticles with four different pH in the solution to see its influence in the oxides obtained. This method allowed for generating aggregates of 1–10 nm, and under optimal conditions (pH=10) we could control the size in the range of 1–4 nm. With the purpose to analyze the biosynthesized iron oxide clusters we employed electron transmission microscopy techniques. Because the biosynthetic method with alfalfa has been used, the presence of the biomass, which is dense and within which are contained the nanoparticles, makes their observation difficult. Using the HAADF (Z contrast) technique it is possible to locate the nanoparticles, which are then characterized using EDS and HRTEM. PACS 61.46.-w; 68.37.Lp; 81.07.-b; 81.16.Be  相似文献   

17.

Abstract  

Iron doped titanium oxide nanotubes (TNTs) were synthesized by hydrometallurgical process using a mixture of NaOH and methanol as precipitating and reducing agents, respectively. Nanotubes with a high purity and good aspect ratio are produced as indicated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The characterization data show that high-purity Fe-doped TNTs with diameter around 12–14 nm and length around 400–460 nm are synthesized using this process. The TNTs are found to be in the anatase phase and as the Fe doping is increased, the conductivity increases. UV/VIS data suggest the red shift in the peaks and increased absorption on the account of doping. The studies on microcosmic magnetic properties of the sample with 15% Fe content indicate the component of magnetic moment in the axial direction of nanotubes. Doping of Fe is found to considerably affect the crystallite size, Curie temperature (T c), DC conductivity (σ), and Raman shifts.  相似文献   

18.
Summary The inverse problem in the magnetic measurement of the lung was studied with a method using hypothetical distributions of magnetic dust. Both unconstrained and constrained minimizations of an objective function were performed. Simulations and analysis showed the efficacy of the method. Paper presented at the ?IV International Workshop on Biomagnetism?, held in Rome, September 14–16, 1982.  相似文献   

19.
We present the results of the interaction of iron oxide nanoparticles with some biologically active surfactants, namely, oleic acid and cytotoxic alkanolamine derivatives. Physico-chemical properties, as magnetization, magnetite concentration and particle diameter, of the prepared magnetic samples were studied. The nanoparticle size of 11 nm for toluene magnetic fluid determined by TEM is in good agreement with the data obtained by the method of magnetogranulometry. In vitro cytotoxic effect of water-soluble nanoparticles with different iron oxide:oleic acid molar ratio were revealed against human fibrosarcoma and mouse hepatoma cells. In vivo results using a sarcoma mouse model showed observable antitumor action.  相似文献   

20.
Summary The synthesis of a new BCT Fe phase was performed in Fe/Ir(100) superlattices grown by MBE. Magnetic properties of57Fe/Ir(100) superlattices with 4 ml Fe and variable Ir thickness (2–30 ?) are investigated by57Fe conversion electron M?ssbauer spectroscopy in the 4.2–300 K temperature range. Two spectral components are evidence, related, respectively, to Fe atoms involved in the central part of the iron layers and at the interface between iron and iridium layers. The appearance of a high magnetic hyperfine splitting in the iron BCT structure above a volume threshold of 12 ?3 is evidenced. Marked differences are observed between the mean magnetic properties and the local ones suggesting strong relaxation effects. Paper presented at ICAME-95, Rimini, 10–16 September 1995.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号