首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
We report our studies on a fiber-optic soliton compressor for generation of sub-100 femtosecond (fs) optical pulses out of picosecond (ps) diode laser pulses. The soliton compressor is rather simple and composed of a 15 ~ 20 m-long step-like dispersion profiled fiber (SDPF) in conjunction with a single Er-doped fiber amplifier (EDFA). Careful design of such a SDPF compressor was performed, leading to demonstration of 20-fs class compression performance, and experimental investigation was carried out in detail on the optical pulse propagation in the compression processes. In addition, nonlinear fiber loops were applied to suppression of pulse pedestals, resulting successfully in high quality optical pulses of the 100-fs range.  相似文献   

2.
运晨霞  滕浩  张伟  詹敏杰  韩海年  钟欣  魏志义  王兵兵  侯洵 《中国物理 B》2010,19(12):124210-124210
This paper investigates experimentally high-order harmonic generation(HHG) of neon gas with 5-fs and 25-fs driving laser pulses.It has been demonstrated that the cutoff energy of the harmonic extreme ultraviolet photons is extended to 131 eV and the HHG spectrum near the cutoff region becomes continuum as the driving laser pulse duration is 5 fs;whereas much lower cutoff photon energy and discrete harmonic spectrum near the cutoff region are presented as the laser pulse duration is 25 fs.The results can be explained by the fact that neutral atoms can be exposed to more intense laser field before they are depleted by ionization because of the extremely short rising time of the few-cycle pulse.The 5-fs driving laser pulse paves the way of generation of coherent x-ray in the water window and single attosecond pulse.  相似文献   

3.
A 180-fs UV pulse has been generated based on a hybrid synchronously pumped mode-locked dye laser for a multiterawatt KrF laser system. The pulse width was measured by the single shot autocorrelation technique with the three-photon fluorescence of the XeF C-A transition. The pulse width broadening due to dispersive media was investigated. The results show that the observed pulse width broadening from 210 fs to 390 fs through the entire system is explained mostly by the linear dispersion of the optical elements for near-transform-limited input pulses.  相似文献   

4.
Optical pulse compression to 5 fs at a 1-MHz repetition rate   总被引:1,自引:0,他引:1  
We report on the characterization and compression of the white-light continuum produced by injection of a 13-fs pulse from a cavity-dumped self-mode-locked Ti:sapphire laser into a single-mode fiber. Pulses as short as 5 fs were generated at repetition rates up to 1 MHz.  相似文献   

5.
Chestnut DA  Taylor JR 《Optics letters》2003,28(24):2512-2514
A completely fiber-integrated, wavelength-tunable subpicosecond pulse source is demonstrated using the soliton self-frequency shift in highly nonlinear dispersion-shifted fiber from a 1.56-microm 10-GHz 400-fs signal. Solitons as short as 100 fs are obtained at tunable wavelengths as high as 1.72 microm. Raman gain from an external pump is used to extend the soliton self-frequency shift to longer wavelengths.  相似文献   

6.
Tamura KR  Nakazawa M 《Optics letters》2001,26(11):762-764
A 10-GHz train of nearly transform-limited 54-fs soliton pulses was generated by adiabatic compression of the output of a mode-locked fiber laser with a polarization-maintaining dispersion-flattened dispersion-decreasing fiber. The peak-to-pedestal ratio exceeded 23 dB. At high input powers, the pulse width was reduced to as short as 43 fs, although the wings of the pulse were degraded and the jitter increased. The compression properties are different for the two polarization axes, owing to their different dispersion characteristics. The output polarization exhibits no drift.  相似文献   

7.
We present an experimental and numerical study of electron emission from a sharp tungsten tip triggered by sub-8-fs low-power laser pulses. This process is nonlinear in the laser electric field, and the nonlinearity can be tuned via the dc voltage applied to the tip. Numerical simulations of this system show that electron emission takes place within less than one optical period of the exciting laser pulse, so that an 8 fs 800 nm laser pulse is capable of producing a single electron pulse of less than 1 fs duration. Furthermore, we find that the carrier-envelope phase dependence of the emission process is smaller than 0.1% for an 8 fs pulse but is steeply increasing with decreasing laser pulse duration.  相似文献   

8.
Ultrafast pulse sources based on multi-mode optical fibers are discussed. High-power passively mode-locked fiber lasers based on multi-mode rare-earth-doped optical fibers greatly exceed the power limitations of single-mode oscillators. Ultrafast multi-mode fiber amplifiers operating in conjunction with multi-mode oscillators provide even higher power levels, where nonlinear propagation effects enable pulse compression to below 100 fs. Multi-mode fiber oscillators can be combined with single-mode Raman-shifting fibers to produce widely wavelength-tunable sources of femtosecond pulses. Further amplification in Yb fibers allows for the generation of sub-100-fs pulses with W-level average powers.  相似文献   

9.
Hsiang WW  Lin CY  Tien MF  Lai Y 《Optics letters》2005,30(18):2493-2495
By employing the technique of asynchronous mode locking, we have successfully demonstrated direct generation of stable 10 GHz 816 fs pulse trains with a supermode-suppression ratio >70 dB from a hybrid mode-locked Er-fiber laser. When the modulation frequency deviates from the cavity harmonic frequency by 15-40 kHz, stable femtosecond soliton pulses are formed. Our results demonstrate that asynchronous mode locking can act as an effective mechanism for achieving a shorter pulse width and for stabilizing high-repetition-rate pulse trains in soliton fiber lasers.  相似文献   

10.
Close spaced ultra-short bound solitons from DI-NOLM Figure-8 fiber laser   总被引:1,自引:0,他引:1  
Ultra-short soliton pulses of 72 fs without any pedestal and CW components are observed from Figure-8 passively mode-locked fiber laser, which is incorporated with a dispersion-imbalanced nonlinear optical loop mirror (DI-NOLM). Bound states of asymmetrical solitons with pulse width of 103 fs and separation of 585.5 fs are also observed. The bound soliton separation and pulsewidth remain unchanged even after passing through 1.2 km single mode fiber (SMF) transmission.  相似文献   

11.
The predicted spectral phase of a fiber continuum pulsed source rigorously quantified by the scalar generalized nonlinear Schrödinger equation is found to be in excellent agreement with that measured by multiphoton intrapulse interference phase scan (MIIPS) with background subtraction. This cross-validation confirms the absolute pulse measurement by MIIPS and the transform-limited compression of the fiber continuum pulses by the pulse shaper performing the MIIPS measurement, and permits the subsequent coherent control on the fiber continuum pulses by this pulse shaper. The combination of the fiber continuum source with the MIIPS-integrated pulse shaper produces compressed transform-limited 9.6 fs (FWHM) pulses or arbitrarily shaped pulses at a central wavelength of 1020 nm, an average power over 100 mW, and a repetition rate of 76 MHz. In comparison to the 229-fs pump laser pulses that generate the fiber continuum, the compressed pulses reflect a compression ratio of 24.  相似文献   

12.
Compression of high-energy laser pulses below 5 fs   总被引:4,自引:0,他引:4  
High-energy 20-fs pulses generated by a Ti:sapphire laser system were spectrally broadened to more than 250 nm by self-phase modulation in a hollow fiber filled with noble gases and subsequently compressed in a broadband high-throughput dispersive system. Pulses as short as 4.5 fs with energy up to 20-microJ were obtained with krypton, while pulses as short as 5 fs with energy up to 70 microJ were obtained with argon. These pulses are, to our knowledge, the shortest generated to date at multigigawatt peak powers.  相似文献   

13.
Diode-pumped Yb:Sr(3)Y(BO(3))(3) femtosecond laser   总被引:7,自引:0,他引:7  
We have developed a diode-pumped Yb(3+)Sr(3)Y(BO(3))(3) (Yb:BOYS) laser generating 69-fs pulses, at a central wavelength of 1062 nm. This laser is mode locked by use of a semiconductor saturable-absorber mirror and emits 80 mW of average power at 113 MHz. This is, to our knowledge, the first mode-locked Yb:BOYS laser and the shortest duration obtained from an ytterbium laser with a crystalline host. The central wavelength can be tuned from 1051 to 1070 nm, for sub-100-fs pulses. We have also achieved an average power as high as 300 mW with pulse duration of 86 fs at 1068 nm.  相似文献   

14.
Direct sub-50-fs pulse generation is demonstrated with a mode-locked Yb:YCa4O(BO3)3 laser. With external compression, pulses as short as 35 fs are generated at 1055 nm. The oscillator operating at a repetition rate of 95 MHz is pumped by a two-section distributed Bragg reflector tapered diode laser and mode locked by a semiconductor saturable absorber mirror. The onset of self-Raman-conversion for pulse spectral bandwidths exceeding 40 nm (FWHM) is observed.  相似文献   

15.
Pulses of sub-6-fs duration have been obtained from a Kerr-lens mode-locked Ti:sapphire laser at a repetition rate of 100 MHz and an average power of 300 mW. Fitting an ideal sech(2) to the autocorrelation data yields a 4.8-fs pulse duration, whereas reconstruction of the pulse amplitude profile gives 5.8 fs. The pulse spectrum covers wavelengths from above 950 nm to below 630 nm, extending into the yellow beyond the gain bandwidth of Ti:sapphire. This improvement in bandwidth has been made possible by three key ingredients: carefully designed spectral shaping of the output coupling, better suppression of the dispersion oscillation of the double-chirped mirrors, and a novel broadband semiconductor saturable-absorber mirror.  相似文献   

16.
We demonstrate the generation of high-energy pulses by using a low-repetition-rate Kerr-lens mode-locked laser. Repetition rates as low as 4 MHz were achieved with a long, multiple-pass cavity and a semiconductor saturable Bragg reflector. The laser generated pulses of 55-fs duration with a pulse energy of 48 nJ when it was mode locked in the net negative dispersion regime. Mode locking in the positive dispersion regime reduces instabilities and enables pulses to have durations of 80 fs and energies as high as 90 nJ. This is, to our knowledge, the highest pulse energy and the lowest repetition rate ever generated directly from a femtosecond laser resonator without cavity dumping.  相似文献   

17.
Ultrashort 198- and 158-nm pulses are generated simultaneously by cascaded four-wave mixing of the second and third harmonics of a 80-fs Ti:Sapphire laser in filamentation propagation through a single Ar gas cell. The energies of the 198- and 158-nm pulses are 7.6?μJ and 600?nJ, respectively. The duration of 198-nm pulse is determined to be ca. 45?fs by transient-grating frequency-resolved optical grating, which indicates that the pulse is intrinsically transform limited and chirped by the rear window of the gas cell. The spectral bandwidths of 198- and 158?nm support the transform limited pulse durations of 40 and 28?fs, respectively.  相似文献   

18.
报道了掺Er^3+光纤激光器输出1.531μm波长飞秒激光脉冲增益放大的实验研究结果,将自起振相加脉冲摹参Er^3+光纤激光器输出的飞秒激光脉冲注入掺Er^3+光纤放大器中进行放大,分别采用正向和逆向抽地这的方式,得到了最高放大倍数55倍(17.4dB)和64倍(18.1dB)的增益,对应的最大单脉冲能量(峰值功率)分别为0.384nJ(752W)0.452nJ(1295W),脉冲重复率为20.8  相似文献   

19.
Efficient and tunable diode-pumped femtosecond Yb:glass lasers   总被引:1,自引:0,他引:1  
Diode-pumped Yb:phosphate and Yb:silicate glass lasers have been passively mode locked for the first time to the authors' knowledge. Reliable self-starting mode locking without critical cavity alignment has been achieved with intracavity semiconductor saturable-absorber mirrors and soliton mode locking. We generated pulses as short as 58 fs with the Yb:phosphate laser and 61 fs with the Yb:silicate laser at average output powers of 65 and 53 mW, respectively. The pulse repetition rate was 112 MHz. Additionally, we demonstrated tunability of femtosecond pulses from 1025 to 1065 nm for the Yb:phosphate and from 1030 to 1082 nm for the Yb:silicate glasses. The highest mode-locked output power was 405 mW, with 183-fs pulses from the phosphate glass. The diode pump power was 1.68 W, corresponding to 24% optical-to-optical efficiency. The highest cw output power was 510 mW at the same incident pump power.  相似文献   

20.
Broadening of the pulse waveforms by the higher-order dispersion of a transmission line is a critical limiting factor in achieving terabit-per-second optical time-division multiplexed (OTDM) transmission with femtosecond pulses. We show that the third- and fourth-order dispersion of a transmission line can be simultaneously compensated for by use of a phase modulator. In this method, sinusoidal phase modulation applied to the linearly chirped pulse before transmission compensates for the phase shift caused by the third- and fourth-order dispersion of the transmission line. The pulse broadening of a 380-fs pulse after a 70-km transmission in a 1.28-Tbit/s OTDM experiment was as small as 20 fs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号