首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
为了对水中的有机污染物进行绿色、快速、准确的检测,提出了一种基于荧光多光谱融合的水质化学需氧量(Chemical Oxygen Demand, COD)的检测方法。实验样本为包含近岸海水和地表水在内的实际水样53份,采用标准化学方法获取样本的化学需氧量的理化值,利用荧光分光光度计采集样本的三维荧光光谱并对光谱数据进行处理和建模。在200~300 nm(间隔5 nm)的激发波长范围内将三维光谱展开成二维的发射光谱(发射波长范围250~500 nm,间隔2 nm)。采用ACO-iPLS(蚁群-区间偏最小二乘)算法提取发射光谱特征,PSO-LSSVM(粒子群优化的最小二乘支持向量机)算法建立预测模型,分别建立了单激发波长下的荧光发射光谱数据预测模型、多激发波长下发射光谱的数据级融合(LLDF)预测模型以及多激发波长下发射光谱的特征级融合(MLDF)预测模型,通过对预测效果的对比,得出结论。实验结果表明,对于不同激发波长下荧光发射光谱数据而言,265 nm激发光作用下的发射谱数据的预测模型最优,其检验集决定系数R2P和外部检验均方根误差RMSEP分别为0.990 1和1.198 6 mg·L-1;对于荧光多光谱数据级融合模型(简写为:LLDF-PSO-LSSVM)而言,在235,265和290 nm激发光作用下的发射光谱的LLDF模型效果最优,其检验集的R2和RMSEP分别为0.992 2和1.055 1 mg·L-1;对于荧光多光谱特征级融合模型(MLDF-PSO-LSSVM)而言,在265,290和305 nm激发光作用下的荧光发射光谱的MLDF模型效果最优,其R2p=0.998 2,RMSEP=0.534 2 mg·L-1。综合比较各类建模结果可知,MLDF-PSO-LSSVM的模型效果最优,说明基于荧光发射光谱数据,采用多光谱特征级融合模型检测水质COD时,检测的精度更高,预测效果更好。  相似文献   

2.
一种紫外-可见光谱法检测水质COD的浊度影响实验研究   总被引:2,自引:0,他引:2  
消除浊度影响是直接光谱法检测水质COD的关键技术问题。此源于紫外-可见光谱法检测水质参数的关键依赖于化学计量法所建立的准确的水质参数分析模型,而浊度是影响其建模的一个重要参数。为此,选取福尔马肼浊度液和邻苯二甲酸氢钾标准溶液,开展了紫外-可见吸收光谱法检测水质COD的浊度影响实验研究,获得了选定溶液在245,300,360和560 nm几个特征波长点的吸光度随浊度变化的最小二乘法拟合曲线,分析了吸光度随浊度的变化规律。研究结果表明,在240~380 nm的紫外光谱段,由于引起浊度的颗粒物对有机物产生了吸附,致使浊度对水样的紫外光谱影响较为复杂;在380~780 nm的可见光谱区域,浊度对光谱的影响则是随着波长的增大而减弱。基于此,开展了多元散射校正法对受浊度影响的水样光谱进行校正试验。对某溪水水样的紫外-可见吸收光谱进行多元散射校正,通过处理前后光谱对比表明,浊度引起各个波长点的基线偏移都得到了有效的校正,而在紫外区域特征并未减弱。接着对选取的三种液体的紫外-可见吸收光谱进行多元散射校正,实验结果表明:该方法可在不影响水样紫外-可见吸收光谱特征的前提下对其吸收曲线进行有效的校正,这不仅提高了光谱法检测水质COD的信噪比,而且还为化学计量法建立准确、有效的水质检测COD分析模型进行数据预处理提供了一种新途径。  相似文献   

3.
基于选择性模型组合的三维荧光光谱水质分析方法   总被引:5,自引:0,他引:5  
为提高三维荧光光谱水质分析的精度,提出一种选择性模型组合方法,采用相关系数法对三维荧光光谱激发波长进行选择,并将被选中的激发波长下的荧光发射光谱水质分析子模型采用岭回归法进行模型组合,得到对水质指标的组合模型。以一组总有机碳(TOC)范围在3.41~125.35 mg·L-1,化学需氧量(COD)范围在22.80~330.60 mg·L-1的32个地表水和城市生活污水水样做为研究对象,对其三维荧光光谱220~400 nm范围内的10个激发波长采用上述方法进行选择,分别针对TOC和COD指标筛选出260,280,400 nm和220,280,400 nm各3个激发波长。采用部分最小二乘方法建立上述激发波长下荧光发射光谱水质分析子模型,根据岭回归法计算各子模型的组合系数,分别得到对TOC和COD指标的组合模型。实验结果表明:采用该方法得到的组合模型对TOC和COD两种指标的预测误差均方根(RMSEP)相比精度最高的单一荧光发射光谱子模型分别减小了15.4%和17.5%,相比未经模型选择的组合模型分别减小了6.1%和10.9%。  相似文献   

4.
采用光谱技术检测水质参数是当前的一个研究热点,提出了一种基于荧光发射光谱的水质化学需氧量(COD)的检测方法。实验样本分为两组,第一组为20份COD标准溶液,第二组为63份实际水样。实验样本的化学需氧量检测采用快速消解分光光度法,利用三维荧光分光光度计采集水样在EX=275 nm激发波长下的荧光发射光谱(荧光发射光谱范围为EM=325~450 nm),并对两类水样的荧光发射光谱数据进行了处理和建模。分别采用主成分回归(PCR)和偏最小二乘回归(PLSR)对两类水样的荧光发射光谱数据进行了预测模型的建立,并对模型效果进行了对比。为验证该方法的可行性和模型的预测能力,将所建PLSR模型预测结果与标准方法的检测结果进行了对比。结果表明,对于COD标准液来说, PLSR和PCR的主成分数分别取5和8时所得的模型的交叉检验效果最优,校正模型的决定系数分别为R■=0.999 9和R■=0.989 7,校正模型对检验集数据的预测误差不超过10%,且PLSR所建模型优于PCR模型。对于实际水样而言, PLSR和PCR的主成分数分别为6和7时,校正模型的交叉验证效果最优。PLSR法和PCR法的校正集的交叉检验均方差RMSECV_(PLS)和RMSECV_(PCR)分别为0.932 2和0.976 4 mg·L~(-1)。对于实际水样的检验集来说, PLSR法和PCR法的预测决定系数R■和R■分别为0.940 2和0.919 0,说明PLSR法的预测效果更优,基于荧光发射光谱数据的PLSR模型具有较高的预测能力和较强的适应性,可以快速、准确的检测出水质COD。通过和传统检测方法的效果对比可知,该方法可用于检测有机污染物浓度较低的水体,有机物浓度较高时采用该方法时检测误差会变大。该研究为水质检测光学传感器的研发提供了一种新的设计思路。  相似文献   

5.
为了探究反射光谱检测水体中毒死蜱农药的可行性,使用由ASD公司的FieldSpecPro地物波谱仪构成的高光谱采集系统在室内、室外环境获取两种不同浓度区间的毒死蜱样品的光谱数据。基于偏最小二乘(PLS)和主成分分析(PCA)算法分别对毒死蜱样品光谱数据建立全波段定量模型,结果两种模型的预测能力均较高。通过相关性分析(CA)计算相关系数来选择毒死蜱样品光谱的特征波长,其中浓度区间为5~75 mg·L-1的室内、室外实验光谱的特征波长为388,1 080,1 276 nm和356,1 322,1 693 nm,浓度区间为0.1~100 mg·L-1的室内外实验样品光谱的特征波长为367,1 070,1 276,1 708 nm和383,1 081,1 250,1 663 nm。结合PLS算法建立样品特征波长光谱数据的定量模型,结果与全波段模型相比,浓度区间为5~75 mg·L-1的室内外实验光谱PLS特征波长模型的校正集决定系数R2C分别提高至0.987 5和0.999 2,预测集决定系数R2P分别提高至0.989 4和0.994 4,校正集均方根误差RMSEC分别降低为2.841和0.714,预测集均方根误差RMSEP分别降低为1.715和1.244;浓度区间为0.1~100 mg·L-1的室内外实验光谱特征波长PLS模型的校正集决定系数R2C分别提高至0.998 3和0.998 8,预测集决定系数R2P分别提高至0.998 4和0.999 0,校正集均方根误差RMSEC分别降低为1.383和1.186,预测集均方根误差RMSEP分别降低为1.510和1.229,验证集标准差与预测均方根误差的比值(RPD)有所增加,尤其是针对浓度区间为0.1~100 mg·L-1的实验,RPD值显著增加至21.7,说明基于特征波长建立的毒死蜱样品定量模型具有较高精度的预测能力,但是通过不同浓度区间范围的对比实验发现,ASD地物光谱仪对低浓度的毒死蜱溶液预测的相对误差偏大,存在客观上的检测下限。为了保证不同试验条件下的毒死蜱农药的特征波长都得到分析,增强模型使用的普适性与鲁棒性,根据特征波长选择出4个波段,即351~393,1 065~1 086,1 245~1 281和1 658~1 713 nm作为特征波段。特征波段模型的波长变量个数共38个,相比于全波段模型的432个波长变量,模型变量精简了91.2%,其中浓度区间为5~75 mg·L-1的室内外实验光谱PLS特征波段模型的R2C分别为0.993 7和0.987 8,R2P分别为0.979 8和0.998 2,RMSEC分别为1.690和2.516,RMSEP分别为1.987和0.659;浓度区间为0.1~100 mg·L-1的室内外实验光谱特征波段PLS模型的R2C分别为0.9882和0.9807,R2P分别为0.9391和0.9936,RMSEC分别为3.345和3.942,RMSEP分别为8.996和2.663,且四种实验情况下的模型RPD值均大于2.5,满足定量分析条件。因此采用高光谱采集系统对室内和室外环境中毒死蜱农药的快速检测具有一定的可行性,此研究结果对有机磷农药等面源污染物快速检测有实际的应用价值,可为农田水体有机磷农药快速检测仪器的开发提供理论基础。  相似文献   

6.
一种检测低浓度化学需氧量的双波长光谱方法   总被引:4,自引:0,他引:4  
提出了一种基于双波长光谱法快速测定低污染水样的化学需氧量(COD)的方法.结果表明:对低COD样品采用440和560 nm双波长的测定方法可有效地提高可靠性和检测灵敏性.该法的灵敏度(即定量检测下限)为8.6 mg·L-1;在低COD范围标样(≤100mg·L-1)的准确性对比测定相对标准误差在2%~15%的范围内.另外,该方法不需要用标准样品进行校正,可以通过光谱法检测消解液中重铬酸根的消耗直接计算出样品的COD值,使实验步骤得到了进一步的简化.  相似文献   

7.
三种酚类化合物的三维荧光光谱特性研究   总被引:1,自引:0,他引:1  
三维荧光光谱技术通过在不同激发波长下扫描发射光谱获得荧光强度变化信息,由于其灵敏度高,选择性好,被广泛用于环境中污染物的监测。利用该方法研究3种酚类化合物的荧光光谱特性,在激发波长为240~360 nm,发射波长为260~500 nm范围内,确定了苯酚、间甲酚和麝香草酚的荧光峰位置分别为272/300,274/300和276/304 nm。由于3种酚类物质为同系物,结构相似,因此得到的激发光谱和发射光谱在形状上极为相似。工作液浓度在0.02~1.0 mg·L-1范围内,3种酚类物质的浓度与荧光强度之间均呈现较好的线性关系,且检出限达到1 μg·L-1。实验结果表明,用三维荧光光谱法可对3种酚类化合物进行定性和定量分析。  相似文献   

8.
COD代表了水体受还原性物质污染的程度。相对于采用传统方法检测COD,存在检测时间长且操作复杂等缺点,紫外光谱法以其检测速度快,无需使用化学试剂等特点成为了主流的检测方法。基于朗伯-比尔定律,以邻苯二甲酸氢钾粉末配置的COD标准溶液为研究对象,针对低温环境下利用紫外光谱法检测COD精度的问题,分别对COD的最佳检测波长和温度对COD检测值的影响进行研究。同时选择长春市某地区地表水为研究对象,验证COD最佳检测波长在实际水样中的适用性及温度补偿模型的准确度。在研究检测波长对COD检测值的影响时,选用256, 266, 276, 286和296 nm共5个波长对样本进行回归分析,它们的吸光度分别为A_(256),A_(266),A_(276),A_(286),A_(296),将吸光度A与COD标准溶液浓度值进行线性回归,通过拟合结果得出:276, 286和296 nm处模型具有代表性,且在286 nm处拟合效果最好, 296 nm次之,最后为276 nm,其中286 nm处相关系数r为0.994 6,决定系数R~2为0.989 4,波长为296 nm处和方差SSE=0.011 4,预测均方根误差RMSE=0.037 7,但其决定系数R~2较低,可见在286 nm处COD检测值与吸光度具有最高的相关性,又探究了标准温度(20℃)下8 mg·L~(-1)的COD实际水样和标准水样的光谱吸收情况,得出286 nm同样适用于实际水样的检测,可见286 nm处为最佳检测波长。在研究温度对COD检测值的影响时,采集不同温度下COD实际水样与标准水样的紫外吸收光谱,经过分析得出:COD实际水样中紫外光谱吸收度会随温度升高而增大。为了减弱在COD测量中温度的影响,根据最小二乘原则,建立温度补偿模型。利用实际水样验证温度补偿模型的准确度,同时进行误差分析,分析结果表明:COD的实际值与补偿后值的最大相对误差为6.38%,最小相对误差为0.63%,且多数相对误差集中在4%,由此可见, COD温度补偿模型补偿精度高,效果良好。结果表明:COD检测选取的最佳波长及温度补偿模型可有效的提高COD低温检测精度。  相似文献   

9.
针对农业生产中阿维菌素过度使用造成的农作物农药残留超标问题,利用JASCO FP8300荧光分光光度计对阿维菌素农药溶液进行荧光光谱检测,分析阿维菌素原药溶液及制剂溶液的荧光光谱特征,为实现阿维菌素的快速检测提供数据参考。实验首先通过分析原药溶液和两种来自不同生产厂家的制剂溶液的三维荧光光谱,对比荧光特征峰的位置异同,判断阿维菌素荧光特征峰的区域为Ex=250~290 nm,Em=280~320 nm,最佳激发波长为270 nm。接着,选定Ex=270 nm作为最佳激发波长对原药溶液及制剂溶液进行二维荧光光谱检测,得到相应的二维荧光光谱数据。根据光谱数据,分析阿维菌素荧光特征峰处荧光强度值随着溶液浓度变化的规律,将相关数据拟合,得出关于阿维菌素荧光特征峰值与对应溶液浓度值的预测模型。由数据分析结果得知,阿维菌素原药溶液在10~35 mg·L-1浓度范围内预测模型的R2为0.999,预测结果的均方根误差RMSE为0.359 mg·L-1;两种不同厂家生产的阿维菌素制剂溶液在10~35 mg·L-1浓度范围内预测模型的R2分别为0.935,0.985,预测结果的均方根误差RMSE分别为1.945和0.858 mg·L-1。实验表明,制剂中其他填充剂及助剂等成分不会造成制剂中阿维菌素有效成分的荧光效应失效,并且能够通过荧光强度值来反映阿维菌素的浓度,进一步验证了利用荧光光谱对阿维菌素含量进行检测的可行性。  相似文献   

10.
好氧处理后城市污水荧光指纹的变化   总被引:1,自引:0,他引:1  
传统有机物参数如COD和BOD等只能表示总量,无法展示有机物成分。荧光光谱可以展现有机物组成,如同指纹与水样一一对应,被称为水质荧光指纹。该文研究了以生活污水为主的城市污水三维荧光光谱在典型活性污泥法处理前后的变化,识别出该类污水荧光指纹中可生物降解和难降解有机物的分布区域:城市污水的激发波长/发射波长=280/340nm与225/340nm附近的荧光主要由可生物降解的物质产生,而激发波长大于300nm和激发波长小于300nm且发射波长大于400nm的两个区域的荧光主要由难降解物质产生。结果表明荧光指纹可以检测污水处理工程的运行效果并指导反应器设计和运行。  相似文献   

11.
采用同步荧光技术结合化学计量学方法实现了鸡肉中甲磺酸达氟沙星(DFM)和氧氟沙星(OFL)残留的快速检测。首先,分析了DFM标准溶液、OFL标准溶液、空白鸡肉提取液和含DFM和OFL的鸡肉提取液的同步荧光光谱,确定了鸡肉中DFM和OFL残留的检测波长差(Δλ)分别为130和200 nm,荧光激发峰分别为288和325 nm。其次,采用单因素试验考察了氢氧化钠溶液浓度和表面活性剂种类对荧光强度的影响,确定了鸡肉中DFM和OFL残留的最佳检测条件为:氢氧化钠溶液浓度0.1 mol·L-1和SDS溶液浓度0.1 mol·L-1。最后,利用线性回归和偏最小二乘回归(PLSR)及多元线性回归(MLR)算法分别建立了鸡肉中DFM和OFL残留的预测模型。试验结果表明,与基于线性回归和MLR的DFM残留预测模型相比,基于PLSR的DFM残留预测模型的综合评价更好,其预测集决定系数(R2P)为0.978 3,预测集均方根误差(RMSEP)为1.934 2 mg·kg-1,相对预测误差(RPD)为5.876 5。与基于线性回归和PLSR的OFL残留预测模型相比,基于MLR的OFL残留预测模型的综合评价更好,其R2P为0.895 0,RMSEP为3.859 8 mg·kg-1,RPD为2.509 1。该方法操作简单、耗时短,可用于鸡肉中DFM和OFL残留的快速检测。  相似文献   

12.
在水果的品质检测和分级分选中,存在不同仪器所建检测模型难以共享的难题。为此,以壶瓶枣为研究对象,利用可见/近红外光谱技术探讨仪器间可溶性固形物含量(SSC)检测模型的传递方法。首先,采用美国ASD(Analytical Spectral Device)公司生产的两台仪器采集样本的光谱信息,采用最小二乘支持向量机(LS-SVM)建立原始光谱、Savitzky-Golay一阶导数处理、标准正态变量变换后的SSC检测模型,预测不同仪器采集的光谱时3种方法的预测能力均较差。预测同一台仪器的光谱时,基于原始光谱的主仪器所建模型最优,预测集的决定系数(R2p)和均方根误差(RMSEP)分别为0.73和1.36%。在此基础上,采用Kennard/Stone算法选取标样,利用专利算法(Shenk’s)、直接标准化(DS)、斜率/偏差算法(S/B)进行模型传递。然后,根据回归系数提取主仪器(24个)和从仪器(28个)的特征波长,优选出单一变量(SV)24个、共性变量(CV)23个、融合变量(FV)29个,均涵盖了SSC的主要吸收谱带。利用优选的变量分别建立主仪器的LS-SVM检测模型,采用主仪器的预测结果(R2p=0.78~0.80,RMSEP=1.07%~1.13%)明显好于全波段所建模型,但预测从仪器时RMSEP为6.62%~7.88%,模型失效。最后,基于波长位置偏移和分子振动的吸收特性提出了共性变量优选结合差值补正(CV-MC)、单一变量优选结合差值补正、融合变量优选结合差值补正、共性变量优选结合波长补正算法(CV-WC)进行模型传递,并与SV-Shenk’s,CV-Shenk’s,FV-Shenk’s,SV-DS,CV-DS,FV-DS,SV-S/B,CV-S/B和FV-S/B进行对比分析。结果表明,基于全波段进行模型传递时,预测结果均较差(R2p=0.03~0.34,RMSEP=2.44%~4.67%);基于优选变量所建模型经SV-Shenk’s,CV-Shenk’s,FV-Shenk’s传递后的结果较差,经其他算法传递后的结果(R2p=0.47~0.73,RMSEP=1.30%~1.90%)好于全波段;基于共性变量传递后的结果好于单一变量和融合变量,CV-MC结果最佳(R2p=0.73,RMSEP=1.30%),CV-WC传递后的预测结果(RMSEP=1.62%)与CV-DS和CV-S/B相近。研究表明,CV-MC和CV-WC均是一种有效模型传递算法,对建立不同仪器间通用的鲜枣品质检测模型具有重要意义。  相似文献   

13.
二维相关光谱的猪肉TVB-N特征变量优选研究   总被引:1,自引:0,他引:1  
为了探讨利用二维相关可见/近红外光谱法优选猪肉挥发性盐基氮(TVB-N)特征变量的可行性,以贮藏时间为外扰,研究了不同新鲜程度猪肉样本的二维相关光谱特性。首先,获取56个猪肉样本在贮藏1~14 d的400~1 000 nm范围的可见/近红外反射光谱,经过标准正态变量变换(SNV)处理后,基于全波段光谱建立TVB-N的偏最小二乘回归(PLSR)模型。然后,依据TVB-N实测值,从中挑选出10个具有一定浓度梯度的样本(贮藏时间分别为0,36,72,108,144,180,216,252,288和324 h),利用一阶导数对光谱进行预处理后,根据不同样本之间的光谱差异,选取7个波段用于二维相关光谱解析。分析各个波段的二维相关同步谱和自相关谱,从7个波段范围内共选取23个变量作为不同贮藏时间下与TVB-N相关的敏感波长,并建立简化的PLSR模型。相较于全波段光谱数据所建模型,模型效果有所改善,预测集决定系数R2p由0.792 1上升至0.865 8,误差从3.658 2 mg·(100 g)-1下降至3.246 0 mg·(100 g)-1。表明基于二维相关光谱对猪肉TVB-N特征变量进行优选的思路是可行的,该方法能够从全光谱数据中筛选出与目标物质相关的敏感变量,这也为近红外光谱特征波长选择提供了一个新的方法。  相似文献   

14.
针对水果生产中的农药残留问题,利用表面增强拉曼光谱技术(SERS),把害虫防治使用较多的有机磷农药亚胺硫磷与毒死蜱作为研究对象,探索性研究了将金胶用作增强基底检测以脐橙为载体的混合农药残留快速检测。采集混合农药样品的SERS光谱,通过对比农药的特征峰可以对混合农药进行定性分析。同时利用化学计量学方法,建立混合农药的定量数学模型,并通过对比不同的预处理方法和建模波段对混合农药样品拉曼光谱的处理结果,选择出最优预处理方法与算法的组合。在拉曼光谱范围200~2 300 cm-1内,利用PLS算法处理经一阶微分预处理后的光谱数据,建立的脐橙表皮混合农药残留回归模型效果较好,预测相关系数(Rp)为0.912,预测均方根误差(RMSEP)为3.601 mg·L-1。经过波段筛选后并对光谱处理结果对比,发现光谱在200~620,830~1 040及1 250~2 300 cm-1范围内,利用PLS算法处理经一阶微分预处理后的光谱数据,建立的回归模型效果较好,Rp为0.909,RMSEP为3.338 mg·L-1。研究表明使用SERS技术,可以对脐橙表皮上残留的混合农药进行定性与定量的分析。  相似文献   

15.
黄河每年输送大量泥沙进入渤海。研究黄河口海域悬浮物浓度,对于黄河输沙以及周边海域的环境监测具有重要意义。利用2011年夏、冬两季实测遥感反射率以及同步测量悬浮物浓度数据,开展了黄河口海域悬浮物浓度分段线性反演研究。结果表明,不同浓度范围下,悬浮物浓度反演的敏感波段不同;浓度小于等于50 mg·L-1(≤50 mg·L-1),敏感比值波段为(600~700 nm)/(400~600 nm),浓度高于50 mg·L-1(>50 mg·L-1),敏感比值波段为(750~900 nm)/(420~720 nm),Landsat8 OLI的对应组合方式分别为B4/B2和B5/B3;根据上述浓度分段范围分别建立线性模型,其精度R2,RMSE和APD分别为0.873 5,4.08 mg·L-1和22.81%(≤50 mg·L-1),以及0.969 3,102.96 mg·L-1和17.51%(>50 mg·L-1),整个浓度下三个精度参数分别为0.975 3,67.03 mg·L-1和20.45%,均优于常用单一模型在分段和整体浓度下的相应参数,且具有良好的稳定性。分段线性模型,更适合浓度变化大的黄河口海域悬浮物浓度反演。  相似文献   

16.
高光谱数据可以捕获内陆水体中不同浓度的化学需氧量(COD)引起的光谱变化,因此研究光谱反射率与COD浓度之间的关系对于COD的遥感估算至关重要。支持向量回归模型(SVR)具有适合小样本、泛化能力好的特点,基于SVR模型能够更加准确获得COD浓度和光谱数据之间的关系,但仍然存在参数选取困难和易陷入局部极值的问题。为了解决这个问题,将模拟退火-粒子群算法(SA-PSO)引入到支持向量回归机的参数优化过程中,提出了一种改进SVR(SA-PSO-SVR)的内陆水体COD高光谱遥感反演方法。以潍河流域为研究区域,通过野外测量获得了COD浓度和水表面光谱反射率。首先根据光谱反射率对COD的响应来确定敏感因子,把SA-PSO算法引入SVR的参数优化过程中建立了COD浓度与敏感因子之间的反演模型。最后利用珠海一号高光谱数据验证模型的准确性,进而获得了COD浓度的分布情况。通过光谱分析,可知该区域实测的水面光谱具有典型的二类水体特征,光谱曲线形状呈现明显的双峰特征,当浓度增加时,反射峰具有向短波长方向移动而反射谷向长波长方向移动的趋势。通过计算Pearson相关系数分析COD浓度和光谱之间的相关性,结果表明最佳的反演因子为518 nm/940.4 nm,623.6 nm/636.8 nm,729.2 nm/890.9 nm和752.3 nm/857.9 nm的四个波段比值组合;经过SA-PSO-SVR方法建立的COD估计模型的平均相对误差(MRE)和均方根误差(RMSE)分别为1.62%和2.99 mg·L-1(R2=0.86),反演结果优于其他模型(SVR、BP神经网络和线性回归模型)。将实测水面光谱建立的最优模型应用于高光谱卫星影像上,RMSE和MRE分别为4.47 mg·L-1和11.87%。获得的潍河-峡山水库区域的COD反演结果显示:COD的整体浓度介于17~42 mg·L-1之间,韩信坝、峡山水库的东北部、渠河注入潍河的交汇处等区域的COD浓度高于其他水域。证实了SA-PSO-SVR是一种有效的COD高光谱反演方法,可供潍河流域水资源管理提供参考。  相似文献   

17.
铝合金中Fe元素的浓度会影响铝合金的软硬程度,从而影响铝合金器件的工作使用寿命,因此铝合金中Fe的含量检测精度非常重要,开展了空间约束结合支持向量机提高毫秒激光诱导击穿光谱的铝合金中的Fe元素成分检测精度研究。在平板空间约束条件下,毫秒激光诱导铝等离子体光谱出现了光谱增强,并且提高了等离子体辐射光谱稳定性,光谱辐射中的Fe Ⅰ 345.99 nm,Fe Ⅰ 369.51 nm,Al Ⅰ 394.40 nm,Al Ⅰ 396.15 nm四条特征谱线的增强因子分别为2.20,2.14,2.28,2.41。建立了基于外标法和支持向量机(SVM)的铝合金中Fe元素定量分析定标模型,采用外标法得到有无平板空间约束下ms-LIBS对Fe元素的定标曲线的拟合相关系数R2,RMSEC,RMSEP和ARE分别为0.893,0.261 Wt%,0.156 Wt%,40.977%和0.852,0.337 Wt%,0.274 Wt%,42.947%。在约束条件下SVM模型的RMSEC为0.086 2 Wt%,RMSEP为0.043 1 Wt%;采用SVM方法得到有无平板空间约束下ms-LIBS对Fe元素的定标曲线的拟合相关系数R2,RMSEC,RMSEP和ARE分别为0.984,0.086 Wt%,0.043 Wt%,3.715%和0.941,0.134 Wt%,0.051 Wt%,12.353%。结果表明,在空间约束条件下,采用ms-LIBS结合SVM方法能够大幅度提高ms-LIBs的定量分析精度和实验重复性,且有效降低了铝合金的基体效应,能够满足铝合金的痕量元素快速检测。  相似文献   

18.
基于最优光谱指数的大豆叶片叶绿素含量反演模型研究   总被引:1,自引:0,他引:1  
叶绿素含量的准确获取及预测可为作物种植的精准化管理提供理论依据。利用最优光谱指数建立大豆叶绿素含量反演模型,以大豆花芽分化期叶片为研究对象,获取高光谱和叶绿素含量数据。首先构建了7种与叶绿素含量相关的典型光谱指数,分别为比值指数(RI)、差值指数(DI)、归一化差值植被指数(NDVI)、修正简单比值指数(mSR)、修正归一化差值指数(mNDI)、土壤调节植被指数(SAVI)和三角形植被指数(TVI),并对原始高光谱进行一阶微分(FD)处理,随后分别对原始和一阶微分高光谱在全光谱波长范围内两两组合所有波长,进行14个光谱指数的计算。再采用相关矩阵法进行最优光谱指数的提取,将所有波长组合计算出的光谱指数与叶绿素含量进行相关性分析,以相关系数最大值为指标,提取出14组最优的波长组合,并进行对应光谱指数值的计算作为最优光谱指数。最后将最优光谱指数划分为3组模型输入变量,分别与偏最小二乘回归(PLS)、最小二乘支持向量机回归(LSSVM)和套索算法LASSO回归3种方法组合建模并对比分析,以决定系数R2c,R2p和均方根误差RMSEC,RMSEP作为模型评价指标,最终优选出精度最高的大豆叶片绿素含量反演模型。结果表明:14组最优光谱指数波长组合分别为RI(728,727),DI(735,732),NDVI(728,727),mSR(728,727),mNDI(728,727),SAVI(728,727),TVI(1 007,708),FDRI(727,708),FDDI(727,788),FDNDVI(726,705),FDmSR(726,705),FDmNDI(726,705),FDSAVI(727,788)和FDTVI(760,698),相关系数最大值rmax均大于0.8。建立最优模型的方法为输入变量为一阶微分光谱指数(组合2)与LSSVM组合的建模方法,所建模型的R2c=0.751 8,R2p=0.836 0,RMSEC=1.361 2,RMSEP=1.220 4,表明模型精度较高,可为大面积监测大豆的生长状态提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号