首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
采用中红外光谱分析技术对香菇产地进行识别研究,并将相关向量机(relevance vector machine,RVM)算法应用于中红外光谱判别分析之中,取得了较好的效果。通过采集香菇粉末的中红外透射光谱,去除光谱噪声明显部分,对剩下的3 581~689cm-1透射谱线采用多元散射校正(multiplicative scatter correction,MSC)进行预处理,并基于预处理谱线建立了香菇产地识别的偏最小二乘判别分析(partial least squares-discriminant analysis,PLS-DA)、簇类独立软模式分类(soft independent modeling of class analogy,SIMCA)、K最邻近算法(K-nearest neighbor algorithm,KNN)、支持向量机(support vector machine,SVM)、RVM模型等五种判别分析模型。所有模型的识别正确率均高于80%,KNN,SVM和RVM判别分析模型取得了相近的结果,建模集和预测集识别正确率高于90%。基于全谱的PLS-DA模型的加权回归系数,利用加权回归系数法选取了6个特征波数,并基于特征波数建立了PLS-DA,KNN,SVM和RVM模型。基于特征波数的PLS-DA模型的建模集和预测集识别正确率均低于80%,而KNN,SVM和RVM模型的建模集和预测集的识别效果相近,且都高于90%。基于全谱和特征波数的模型中,RVM算法表现出较好的效果,识别正确率优于90%。结果表明,基于中红外光谱技术能用于香菇产地的识别,特征波数的选择以及RVM算法可以有效的用于中红外光谱判别分析中。本文成功将中红外光谱用于香菇产地识别研究,为香菇品质以及其他农产品品质分析提供了一种新的想法,具有实际意义。  相似文献   

2.
近红外光谱技术用于豆浆粉品牌与假冒豆浆粉的鉴别   总被引:1,自引:0,他引:1  
采用近红外光谱分析技术结合化学计量学方法研究对不同品牌的豆浆粉以及假冒的豆浆粉鉴别的可行性。采集不同品牌豆浆粉以及假冒豆浆粉在12 500~4 000 cm-1范围内光谱,并进行不同的预处理。采用偏最小二乘-判别分析(partial least squares-discriminant analysis, PLS-DA)对不同预处理的光谱进行建模比较,去趋势算法(De-trending)预处理光谱与多元散射校正(multiplicative scatter correction, MSC)结合De-trending(MSC+De-trending)预处理光谱的PLS-DA模型预测集判别正确率最高, 均为100%。采用x-loading weights方法分别基于De-trending和MSC-De-trending预处理光谱选择了6个和7个特征波数,并以特征波数分别建立了线性判别分析(linear discriminant analysis, LDA)和误差反向传播神经网络(back-propagation neural network, BPNN)的判别分析模型。结果表明,以所选出的不同的特征波数建立的BPNN判别分析模型取得了最佳的判别效果,建模集和预测集的判别正确率均为100%。采用近红外光谱分析技术可以准确的判别豆浆粉品牌以及假冒豆浆粉产品。  相似文献   

3.
研究了不同分辨近红外光谱对汽车差速器油品牌鉴别的效果与影响。分别采集了五种不同品牌汽车差速器油在4, 8, 16和32 cm-1分辨率下的透射光谱。去除采集波段范围两端噪声明显部分后采用10 522.28~4 443.425 cm-1范围光谱进行分析。不同分辨率光谱的主成分分析(principal component analysis, PCA)结果表明不同品牌差速器油可以被鉴别。同时基于不同分辨率光谱全谱所建立的偏最小二乘判别分析(partial least squares-discriminant analysis, PLS-DA)以及支持向量机(support vector machine, SVM)模型所获得的判别正确率相近且均高于90%。其中以8 cm-1分辨率下PLS-DA与SVM模型的判别正确率最高。上述研究结果表明分辨率对判别分析结果的影响较小。进一步对不同分辨率下的近红外光谱采用连续投影算法(successive projections algorithm,SPA)选择特征波数,发现不同分辨率下得到的特征波数均不相同,表明分辨率影响特征波数的选择。以不同分辨率特征波数建立的PLS-DA以及SVM模型取得了较好的判别分析效果,与以不同分辨率下全谱建立的判别分析模型效果相当。研究结果表明,分辨率对差速器油品牌鉴别影响较小,而对特征波数的选择影响较大,在实际应用中应考虑到分辨率对特征波数选择的影响。总体而言,不同分辨率的近红外光谱全谱与对应的特征波数都能有效的实现对汽车差速器油品牌的鉴别。  相似文献   

4.
用傅里叶变换红外光谱(FTIR)和逐步判别分析法对油菜籽的品种和产地进行鉴别研究。测试了来自5个产地17个油菜籽品种188份油菜籽皮样品的红外光谱,按产地和品种选择训练样本,每个品种选择5份为训练样本,剩下的作为测试样本,选择1 800~950 cm-1范围的光谱信息,在SPSS20.0的判别分析模块中采用逐步法,Fisher线性判别准则,分别建立油菜籽品种和产地的鉴别模型来判别样品的品种和产地;比较了逐步判别分析中五种筛选建模信息的算法所建立的模型对实验样品品种和产地的鉴别效果。基于油菜籽皮红外光谱信息的品种判别分析,五种筛选变量的算法所建立的模型都能较好的识别油菜籽的品种,“Wilks’ Lambda”法所建模型的识别效果最好,判别正确率为97.9%。基于油菜籽皮红外光谱信息的产地判别分析,五种筛选变量的算法所建立的产地判别模型也都能较好的识别油菜籽的产地,“Unexplained variance”法所建模型的识别效果最好,判别正确率为98.4%。研究结果表明,基于油菜籽皮中红外光谱信息的品种和产地判别分析,有望成为油菜籽品种和产地鉴别的方法。  相似文献   

5.
采用近红外透射光谱研究了汽车制动液品牌及新旧的鉴别。采集宝马(BMW),丰田(Toyota),沃尔沃(Volvo)以及嘉实多(Castrol)四种品牌的汽车制动液全新样本以及用过的样本的透射光谱。分别对每一种品牌下全新与用过汽车制动液样本的光谱数据进行主成分分析(PCA),主成分得分图表明不同品牌制动液以及该品牌下全新样本以及用过的样本能够被较好的区分,其光谱特性存在差异。基于主成分载荷(Loadings)进行特征波数选择,偏最小二乘判别分析(PLS-DA),线性判别分析(LDA),簇类独立软模式法(SIMCA),k最邻近分类算法(KNN),随机森林(RF),误差反向传播人工神经网络(BPNN),径向基神经网络(RBFNN),极限学习机(ELM),支持向量机(SVM),最小二乘支持向量机(LS-SVM)等判别分析方法用于建立基于特征波数的判别分析模型,判别模型的建模集和预测集判别正确率均略低于或达到了100%。与其他三种品牌汽车制动液相比,嘉实多全新样本与用过样本的差异较小,KNN与LS-SVM模型的建模集正确率均低于100%。结果表明,近红外透射光谱结合特征波长选择以及判别分析模型对不同品牌制动液以及同一品牌下全新样本以及用过的样本进行识别是可行的,为开发在线或便携式仪器提供理论支持。  相似文献   

6.
烟草是一种成分复杂的天然植物,地理位置、生长条件等外界因素直接影响着烟叶的品质;我国烟叶种植范围十分广泛,每个产区种植的烟叶都有其独特的风格特征,不同产区的烟叶配比对卷烟的质量起着决定性的作用。为实现烟叶产地准确、快速判别,基于近红外光谱(NIRS),采用灰狼算法(GWO)优化的支持向量机(SVM)算法实现烟叶产地鉴别分类。以8个产地的824个烟叶样本为研究对象,基于x-y距离样本集划分(SPXY)方法得到校正集617个和验证集207个样品。首先应用最佳波长筛选方法,如竞争自适应加权采样(CARS)和随机青蛙(RF)算法减少光谱冗余信息,最终从1 609个变量中分别获得141和534个与产地相关的重要变量,并以此输入SVM作为建模数据,接下来在相同搜索范围内比较了粒子群优化算法(PSO)、遗传算法(GA)和GWO对SVM分类模型的优化效果。结果表明,经RF筛选后的光谱变量较CARS具有更好的产地建模性能,其中RF-GWO-SVM对8个产地烟叶的整体判别正确率达到了96.62%,相较于RF-PSO-SVM和RF-GA-SVM正确率更高。同时,RF-GWO-SVM的运行时间分别比RF-PSO-SVM和RF-GA-SVM的运行时间缩短156和131 min,RF-GWO-SVM具有精度更高、寻优速度更快等优点。GWO对于SVM模型参数具有更高效的优化能力,可用于烟叶产地快速鉴别模型的建立。  相似文献   

7.
旨在探索感染不同等级赤霉病的小麦中主要成分含量变化引起的傅里叶中红外光谱信息响应,并结合模式识别方法实现基于傅里叶变换中红外光谱的小麦赤霉病等级无损检测。以感染不同等级赤霉病小麦为研究对象,在4 000~400 cm-1波数范围内采集95个小麦样本的傅里叶中红外光谱数据,利用载荷系数法(XLW)与随机森林算法(RF)分析选取小麦样本傅里叶中红外光谱中的敏感波长,利用稀疏表示分类(SRC)算法建模识别小麦感染赤霉病等级。结果表明:XLW算法和RF算法选择的特征波长作为定性分析模型的输入时模型鉴别准确率与全波段光谱数据作输入时均达90%以上,特征波长提取算法可以有效简化模型并提高效率。RF-SRC模型鉴别效果最好,建模集鉴别准确率达97%,测试集鉴别准确率达96%。小麦感染赤霉病等级的不同会引起小麦中水分、淀粉、纤维素、可溶性氮素、蛋白质、脂肪等物质含量的变化,采用RF算法选择的特征波长均反映了这些物质所对应的傅里叶中红外光谱透射光谱特征的差异,结合SRC模型进行小麦赤霉病等级鉴别可达到最好的鉴别效果。因此,利用傅里叶中红外光谱技术结合模式识别方法对小麦赤霉病等级鉴别是可行的,解释了傅里叶中红外光谱技术检测小麦赤霉病等级的机理。  相似文献   

8.
高光谱与机器学习相结合的大白菜种子品种鉴别研究   总被引:1,自引:0,他引:1  
提出了基于高光谱信息的大白菜种子品种分类识别方法。利用近红外高光谱图像采集系统采集了八种共239个大白菜种子样本;提取15 pixel×15 pixel感兴趣区域平均光谱反射率信息作为样本信息;采用多元散射校正预处理方法对光谱进行消噪;验证了Ada-Boost 算法、极限学习机(extreme learning machine, ELM)、随机森林(random forest, RF)和支持向量机(support vector machine, SVM)四种分类算法的分类判别效果。为了简化输入变量,通过载荷系数分析选取了10个大白菜种子品种分类判别的特征波长。实验结果表明,四种分类算法基于全波段的分类识别对81个预测样本的正确区分率均超过90%,最优的分类判别模型为ELM和RF,识别正确率达到了100%;以10个特征波长的分类判别精度略有下降,但输入变量大幅减少,提高了信息处理效率,其中最优分类判别模型为EW-ELM模型,判别正确率为100%,因此以载荷系数选取的特征波长是有效的。利用高光谱结合机器学习对大白菜种子品种进行快速、无损分类识别是可行的,为大白菜种子批量化在线检测提供了一种新的方法。  相似文献   

9.
研究了中红外光谱预测香菇蛋白质含量的可行性。去掉明显噪声部分后,研究香菇3 581~689 cm-1中红外光谱与蛋白质含量的关系。以Savitzky-Golay(SG)5点平滑预处理光谱建立偏最小二乘法(partial least squares, PLS)的预测模型的效果不理想,模型的建模集和预测集的相关系数均高于0.85,但剩余预测偏差(residual prediction deviation, RPD)值仅为1.77。采用连续投影算法(successive projections algorithm, SPA)算法从3000个波数点中选择7个特征波数,并以七个特征波数分别建立PLS、多元线性回归(multiple linear regression, MLR)、反向传播神经网络(back-propagation neural network, BPNN)和极限学习机模型(extreme learning machine, ELM)。与全谱的PLS相比,以特征波数的PLS模型和MLR模型的预测效果相对较差,而以特征波数的BPNN和ELM模型的预测效果相对较好。其中SPA-ELM模型的预测效果最佳,预测集相关系数(correlation coefficient of prediction)Rp=0.899 5,预测集均方根误差(root mean square error of prediction)RMSEP=1.431 3,剩余预测偏差RPD=2.18。研究结果表明,中红外光谱分析技术可以用于预测香菇蛋白质含量,且SPA选取特征波数能用来代替原始光谱进行建模分析,为香菇蛋白质含量的检测提供了新的思路。  相似文献   

10.
基于优选NIR光谱波数的绿豆产地无损检测方法   总被引:1,自引:0,他引:1  
产地是影响农作物生产的重要环境因素,产地溯源对于食品安全具有重要意义。针对传统农产品产地检测一般采用化学分析法,其操作繁琐且存在破坏性和耗时较长等不足的问题,以北方寒地绿豆为研究对象,分别在白城、杜蒙、泰来等优质绿豆主产区,获取绿豆的籽粒和粉末两种状态的近红外光谱数据(NIR),利用优选NIR光谱特征波数,建立了绿豆产地无损检测的新方法。首先在吸光度值较强的10 105.37~4 078.655 cm-1波数范围内,采用多元散射校正法(MSC),对不同产地的绿豆原始光谱数据进行预处理,以消除光谱干扰信息。应用竞争性自适应重加权采样算法(CARS),优选不同产地绿豆籽粒和粉末状态的光谱特征波数,以减少光谱曲线的特征向量维度。最后利用前馈神经网络(BP)自适应推理机制,建立了绿豆产地与其光谱特征波数之间非线性映射模型,并将网络输出的编码向量解析至产地名称,作为绿豆产地检测的输出结果。研究结果表明:(1)原始光谱经过多元散射校正预处理后,绿豆粉末光谱曲线的误差从12.87降到3.20,绿豆籽粒光谱曲线的误差从153.04降到27.73,提供有效可靠的光谱数据。(2)通过竞争性自适应重加权采样算法,提取绿豆光谱曲线的重要特征波数,从籽粒和粉末状态原始2 114个波数中,分别优化为61个和107个特征波数,波段总数目减少了94.94%以上,并将其作为绿豆产地识别的特征指标。(3)创新性提出了MSC-CARS-BP绿豆产地检测模型,以优选出的光谱特征波数为定量依据,分别对绿豆籽粒和粉末进行产地检测,预测集准确率为92.59%和98.63%,相关系数均达到0.99以上。该方法能够利用近红外光谱处理技术,实现绿豆产地无损检测的目标,为农产品产地自动快速溯源提供了技术支持和参考。  相似文献   

11.
市场上普遍存在“高蛋白”,“高乳脂”等特色牛奶。为了实现对特优优质奶、高蛋白特色奶、高乳脂特色奶和普通奶的无损快速分级,收集了河北省10个牧场不同月份(1月、3月—10月)的5 121份牛奶样本并采集中红外光谱数据,分别测定牛奶中的乳蛋白、乳脂和体细胞数,构建了牛奶品质分级模型。首先,分析牛奶光谱并去除冗余波段,最终选择925~1 597和1 712~3 024 cm-1的敏感波段组合作为全光谱用于建立模型。为了提高模型的性能,采用标准正态变量变换(SNV),多元散射校正(MSC),一阶导数,二阶导数,一阶差分和二阶差分6种算法对光谱进行预处理并建立朴素贝叶斯模型(NB)和随机森林模型(RF),确定二阶差分为最佳预处理方法,其测试集准确率分别为92.11%和96.87%。为了简化模型,利用无信息变量消除法(UVE)、竞争性自适应重加权算法(CARS)与稳定性竞争性自适应重加权采样算法(SCARS)以及UVE-CARS算法和UVE-SCARS算法对二阶差分后的光谱数据提取特征变量。然后,分别基于全光谱和所选特征变量数据,建立NB模型和RF模型。结果表明,SCARS算法为NB模型的最佳特征提取算法,模型的训练集准确率与测试集准确率分别为94.45%,93.94%;UVE-SCARS算法为RF模型的最佳特征提取算法,模型的训练集准确率与测试集准确率分别为99.86%,96.48%。综上,基于傅里叶变换中红外光谱技术建立的二阶差分-UVE-SCARS-RF模型,可以实现特优优质奶、高蛋白特色奶、高乳脂特色奶和普通奶的无损快速分级,通过建立中红外光谱模型,首次将乳蛋白、乳脂含量和体细胞数直接结合进行分级鉴定,这是以往未曾有过的。模型应用方便,只需将获得的牛奶红外光谱数据输入模型即可输出预测类别,在牛奶产业中具有实际应用价值。  相似文献   

12.
快速准确监测农田土壤全氮含量,可显著提高土壤肥力诊断与评价工作的效率。传统测定土壤全氮的方法存在耗时费力、成本高、环境污染等缺点,而基于光谱学原理的土壤全氮定量方法克服了传统测量的劣势。中红外(MIR)光谱相较于可见光-近红外(VNIR)光谱而言,具有更多的波段数和信息量,如何利用中红外光谱监测土壤全氮含量是具有重要应用前景的研究课题。为了探索中红外光谱对土壤全氮监测的可行性,以新疆南疆地区采集的246个农田土样为研究对象,以室内测定的全氮含量和中红外光谱反射率数据为数据源,分析了不同全氮含量土样的中红外光谱特征差异,以主成分分析法(PCA)和连续投影算法(SPA)对光谱数据进行降维,然后采用偏最小二乘回归(PLSR)、支持向量机(SVM)、随机森林(RF)和反向传播神经网络(BPNN)四种建模方法分别构建基于全波段和降维数据的土壤全氮含量定量反演模型。研究结果表明:(1)土壤在中红外波段光谱反射率随全氮含量的增加而增加,在3 620,2 520,1 620和1 420 cm-1附近存在明显的吸收谷;将中红外光谱数据进行最大值归一化处理后,可明显提高土壤光谱反射率与全氮含量的相关性。(2)对比两种数据降维方法,PCA和SPA分别使模型变量数减少了99.8%和97.5%,但以PCA提取的8个主成分为自变量建立的模型预测精度总体要高于SPA对应的模型,因此以PCA提取的主成分建模更适于土壤全氮模型的构建。(3)在建模集中,PLSR和SVM模型以全波段建模精度最高,但建模变量数多,建模效率较低,而RF和BPNN模型分别以PCA和SPA降维后的数据建立的模型在保持精度相当的前提下,可显著提高建模效率;在预测集中,基于PCA降维数据的BPNN模型预测能力最高,R2和RMSE分别为0.78和0.12 g·kg-1,RPD和RPIQ值分别为2.33和3.54,模型具备较好的预测能力。研究结果可为农田土壤全氮含量快速估测提供一定的参考价值。  相似文献   

13.
多菌灵农药的激光拉曼光谱分析   总被引:3,自引:0,他引:3  
实验采集多菌灵农药的固体和液体拉曼光谱信号,对固体的原始拉曼光谱信号进行小波去噪预处理,利用正交试验方法筛选小波去噪参数的最优组合。结果表明,采用db2小波基函数、分解层数为2、阈值方案选择为rigrsure、重调方式为sln时,去噪效果最好,信噪比为62.483。根据不同官能团的振动模式,对去噪后的拉曼光谱分3个波数段(1 400~2 000,700~1 400,200~700 cm-1)进行谱峰归属和分析,得到了多菌灵农药分子在不同波数范围内的特征振动模式,其中,在619,725,964,1 022,1 265,1 274和1 478 cm-1处的拉曼信号较强,可作为固体多菌灵农药的特征峰。从多菌灵农药的液体拉曼光谱中,找到了629,727,1 001,1 219,1 258和1 365 cm-1特征峰,这些特征峰跟固体多菌灵农药的特征峰基本吻合。研究结果可为拉曼光谱分析技术在食品及农产品中农药残留的快速筛选提供判别依据。  相似文献   

14.
自新冠肺炎(COVID-19)疫情爆发以来,国内外多家研究机构和企业都在加快推进新冠病毒(SARS-CoV-2)抗体药物的研发。药物多晶型限制了有效药物的研发进度。药物生产、存储和使用环境影响了药物的稳定性。红外光谱作为一种快速无损检测手段,可从振动光谱反映出药物结构、晶型甚至生产工艺上的差异大大提高了研发效率。首次以三种临床试验被认为治疗新冠肺炎有效药物:磷酸氯喹,利巴韦林和盐酸阿比多尔为例,利用傅里叶红外光谱仪测试得到它们在远红外(1~10 THz)和中红外(400~4 000 cm-1)波段的振动光谱。远红外光谱中,利巴韦林的特征峰位于:2.01,2.68,3.37,4.05,4.83,5.45,5.92,6.42和7.14 THz附近;磷酸氯喹的特征峰位于:1.26,1.87,2.37,3.06,3.78,5.09和6.06 THz附近;盐酸阿比多尔的特征峰位于:2.24,3.14,3.72,4.25和5.38 THz附近。结合密度函理论,选择B3LYP杂化泛函和6-311++G(d,p)基组,利用Crystal14和Gaussian16软件分析了光谱中所有特征峰对应的振动模式,实现了对振动光谱的精确指认。远红外波段,振动模式源自分子的集体振动。中红外波段,2 800 cm-1以下,振动模式主要源自基团的面内外弯曲和摇摆;2 800 cm-1以上,振动模式过渡为C—H,O—H和N—H键的面内伸缩。以考虑了周期性边界条件的晶体结构作为理论计算的初始构型,会让理论光谱与实验光谱更加吻合,尤其是在远红外波段和中红外400~1 000 cm-1的低频段。该研究对深入理解磷酸氯喹,利巴韦林和盐酸阿比多尔等抗病毒药物的药学特性,药物间相互作用,控制药物生产过程,指导药物存储和使用有重大意义。  相似文献   

15.
现有的玉米种子品种鉴别方法检测时间长,费用高,不易大批量快速鉴别。提出了一种基于近红外光谱数据快速鉴别商品玉米品种的新方法。先使用傅里叶变换近红外光谱仪获得从4 000到12 000 cm-1波段范围的37个商品玉米品种籽粒的漫反射光谱数据。对原始光谱进行矢量归一化预处理以消除噪声干扰,为了找到玉米品种籽粒的光谱特征波段,提出一种基于标准差的方法,进而对寻找到的玉米籽粒特征波段光谱做主成分分析(PCA),取能反映玉米品种 99.98% 光谱信息的前10个主成分。最后使用仿生模式识别 (BPR)方法建立了37个玉米品种鉴别模型,对于每个品种的25个样本,随机挑选15个样本作为训练样本,其余10个样本作为第一测试集,其他品种共900个样本作为第二测试集。该鉴别模型对于37个玉米品种的平均正确识别率为94.3%。该方法的进一步研究有利于建立以近红外光谱为基础的物理指纹品种鉴别技术。  相似文献   

16.
结球甘蓝是一种富含碳水化合物的常见蔬菜,可溶性糖含量是决定其品质的重要参数。可溶性糖易溶于水,是蔬菜和水果口味的有效调节剂。作为碳水化合物,可溶性糖由三种元素C,H和O组成,其分子吸收光谱主要由被检测材料的分子中C-H,O-H和CO等基团的组合频率吸收和倍频吸收组成,包含丰富的有机物信息。因此,采用近红外光谱和化学计量学方法,探索结球甘蓝可溶性糖含量的快速检测方法。用德国布鲁克公司的MATRIX-Ⅰ型傅里叶变换近红外光谱仪采集161份结球甘蓝样本光谱数据。波数范围:12 800~4 000 cm-1(780~2 500 nm)。蒽酮比色法测量样本的可溶性糖。综合应用马氏距离法(MD)和蒙特卡洛交叉验证法(MCCV)剔除异常样本,采用Kennard-Stone(K-S)法将样本按照给定比例划分为校正集和验证集。分别使用Savitzky-Golay卷积平滑(S-G),一阶导数(FD),二阶导数(SD),多元散射校正(MSC)和变量标准化(SNV)及它们的组合共12种方法对样本进行光谱预处理,获得最佳预处理方法,提高光谱数据的信噪比。采用竞争性自适应重加权采样法(CARS)筛选偏最小二乘回归(PLS)模型中回归系数绝对值大的波数点,去掉回归系数绝对值小的波数点,以有效选择与所测特性值相关的最优波数组合,获得具有良好鲁棒性和强预测能力的校正模型。使用模型决定系数R2、交互验证均方根误差(RMSECV)、预测均方根误差(RMSEP)作为模型精度评价指标。根据蒙特卡洛交叉验证法和马氏距离剔除异常样本的原理,共剔除10个光谱或者化学值异常的样本。最终参与建模分析的样本个数为151。异常样本剔除后,通过K-S法将样本按照3∶1被分成校正集(110个样本)和验证集(41个样本)。使用原始光谱数据,预处理后的光谱数据和对应于优选波数的光谱数据,建立PLS模型。结果表明,利用MSC+FD光谱预处理可以提高建模精度,校正集R2从处理前的0.68增长到0.93,MSC+FD是本研究中理想的光谱数据预处理方法。利用CARS法共优选了84个建模波数。在12 000~10 000 cm-1波数区域内,有O-H键2级和C-H键3级倍频伸缩振动吸收,此区域主要的背景信息为水和其他含氢基团,在此区域内共包含了36个选定的波数。在8 500~6 000 cm-1区域,存在糖类和水的O-H键的1级倍频伸缩振动吸收,葡萄糖的O-H键的1级倍频伸缩振动吸收,该区域是包含反映可溶性糖成分的主要光谱区间,背景影响较小,CARS方法在此区域共选择了15个建模波数。5 800~4 000 cm-1区域与12 000~10 000 cm-1区域相似,包含的选定波数多,CARS方法在此区域选择了33个建模波数。利用CARS对参与建模的波数进行优选,减少了无关信息,降低了模型的复杂度,选择的波数不但引入了表征待测组分的光谱,同时还引入了代表背景信息的光谱,使得校正模型适应性增强。建立了结球甘蓝可溶性糖的全谱PLS模型,根据CARS波数优选结果,建立了结球甘蓝可溶性糖的CARS-PLS模型。对于全谱PLS定量模型,校正集的决定系数R2为0.93,RMSECV为0.157 2%,RMSEP为0.132 8%。对于CARS-PLS模型,校正集的决定系数R2为0.96,RMSECV为0.076 8%,RMSEP为0.059 4%。数据表明,两种模型具有相当的R2,但CARS-PLS模型的RMSECV是全谱PLS模型的1/2。RMSEP也接近1/2,CARS-PLS模型比全谱PLS定量模型所用建模变量少,模型得到简化,精度更优。用CARS-PLS模型对验证集41个样本进行预测,预测集决定系数R2为0.86,预测标准误差为0.059 4%。提供了一种工作效率较高的结球甘蓝质量无损检测方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号