首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
浮力提垃单晶炉是利用浮力的原理来提拉单晶的新型单晶炉.它结构简单,振动小,造价低廉.提拉速率范围为0.5毫米~150毫米/小时,连续可调,在长时间提拉中,拉速不稳定度<5%.通过二年多来的试用,性能稳定可靠.已先后拉出较大块的铌酸锂单晶和锗酸铋单晶.  相似文献   

2.
《光学学报》2021,41(8):169-194
铌酸锂光子集成是推动未来高速光通信和光信息处理领域变革性发展的重要前沿技术。介绍了利用铌酸锂光子芯片制造技术制备集成光路中关键光子结构与器件的最新研究进展。得益于单晶铌酸锂晶体的高非线性系数和强电光效应,利用制备的高性能铌酸锂光子器件演示了多种高效的非线性光学过程。  相似文献   

3.
辛成舟  马健男  马静  南策文 《物理学报》2018,67(15):157502-157502
选用多种切型铌酸锂(LiNbO_3)单晶,研究了铁基非晶合金(Metglas)/LiNbO_3叠层复合材料基于伸缩-剪切模式的磁电耦合性能,揭示了铌酸锂单晶压电系数与复合材料剪切磁电耦合系数的对应关系,在使用铌酸锂xzt/30~?切型时得到了最优化剪切磁电系数.通过SrFe12O19薄磁带提供偏置磁场,Metglas/LiNbO_3磁电复合材料可在没有外加直流磁场时实现剪切磁电响应,并在0.991 MHz和3.51 MHz频率时分别测出了谐振磁电系数,有望将铌酸锂基剪切磁电复合材料用于高频磁场探测.  相似文献   

4.
通过弹性力学方法计算了基于厚度剪切模式的铌酸锂(LiNbO_3)基磁电复合材料磁电系数与铌酸锂晶体切型、磁致伸缩材料种类、材料尺寸的关系,并讨论了两种不同复合结构边界条件对剪切磁电性能的影响.计算结果表明:(xzt)30°切型铌酸锂单晶具有最大剪切压电系数dp15,制作成的复合材料具有最大剪切磁电系数αE15;通过两相尺寸优化,伸缩-剪切模式Terfenol-D/LiNbO_3复合材料最大剪切磁电系数为24.13 V/(cm·Oe),剪切-剪切模式Metglas/LiNbO_3复合材料最大剪切磁电系数为11.46V/(cm·Oe).实验结果与理论计算规律相符,研究结果为剪切磁电复合结构的设计、剪切模式铌酸锂切型的选择优化提供了指导,有望利用高机械品质因数Q_m值的铌酸锂单晶设计高频谐振磁场探测器.  相似文献   

5.
本文研究了铌酸锂单晶片与石英系光纤之间的耦合问题,以使集成光学器件逐步实用化。石英光纤的折射率在1.45左右,铌酸锂单晶折射率在2.2左右,为改善其间的耦合,我们采用电子迴旋共振微波等离子体化学气相沉积方法,在铌酸锂基片上制备出折射率n为1.78的氮氧化硅膜,并控制其厚度为λg/4(λg=1.52μm),已使反射率下降73%,可望进一步改善。  相似文献   

6.
均匀折射率包层铌酸锂单晶光纤远离截止区的模特性讨论   总被引:1,自引:0,他引:1  
阙文修  霍玉晶 《光学学报》1995,15(3):42-346
给出了具有均匀折射率包层铌酸锂单晶光纤的场强颁上和本征值方程,分析了远离截止区的模特性。  相似文献   

7.
阙文修  姚熹 《物理学报》1995,44(4):606-613
对y切铌酸锂单晶基片镁离子内扩散后,镁的扩散层经电子探针显微分析(EPMA)表明,随着扩散深度镁离子浓度只有近似半抛物形分布,由此得到镁激活能为221kJ·mol~(-1)。探索性地分析了锂外扩散的机理,并提出了一种抑制锂外扩散的方法。对镁离子浓度分布进行了理论模拟,其结果基本上与实验符合。文中所得结果可用于铌酸锂单晶光纤芯-包层波导结构的实现,经选择适当参数(扩散温度、扩散时间、MgO膜厚度、晶纤直径)可望达到低次模传输。 关键词:  相似文献   

8.
铌酸锂,作为应用最广泛的非线性光学晶体之一,近十年来由于薄膜铌酸锂晶圆的出现而再次获得了学术界与产业界的关注.基于薄膜铌酸锂的集成光电子器件的优越性能已在诸多应用中得到演示,例如光信息处理、激光雷达、光学频率梳、微波光子学和量子光学等. 2020年,薄膜铌酸锂器件通过光刻技术在6 in(1 in=2.54 cm)晶圆上的成功制备,推动了铌酸锂加工从实验室逐步走向工业化.薄膜铌酸锂光子器件的研究主要聚焦于利用电光、声光和二阶/三阶非线性效应进行光调制或频率转换;最近三年,掺杂稀土离子还成功赋予铌酸锂增益特性,实现了片上铌酸锂放大器和激光器.本文将简略回顾薄膜铌酸锂的发展过程,着眼于集成光子器件,介绍国内外研究组取得的进展、意义以及面临的挑战.  相似文献   

9.
我们应用静电复印油墨将铌酸锂铁电畴染色(静电染色法)显示,并扩展到铌酸锂晶体光铁电性的显示,包括单畴铌酸锂光折变区电场电荷分布、单畴掺铁铌酸锂晶体表面电击穿效应和单畴掺铁铌酸锂晶体存储的全息衍射光栅图象的显示等. 上述光铁电性显示图象,与使用其他实验手段所得到的  相似文献   

10.
铌酸锂晶体是目前最重要的人工晶体之一,被誉为“光学硅”.铌酸锂晶体薄膜是最有应用前景的集成光电子学基质材料之一.在过去几十年的研究中,铌酸锂晶体在材料生长、基础研究和器件应用方面取得了巨大进展.利用铌酸锂晶体畴工程制备的周期极化铌酸锂、波导以及导电畴壁在光频率转换、光开关、光调制以及纳米电子器件等领域有重要应用.本文介绍了铌酸锂微米尺寸和纳米尺寸畴结构的制备方法及7个表征方式,并从3个方面介绍了铌酸锂畴工程的应用及其研究进展.  相似文献   

11.
LiNbO3 single crystals with a composition close to stoichiometry ([Li]/[Li+Nb]=0.496), 16 mm in diameter and 40 mm in length were grown by the Czochralski method using K2O flux. The domain reversal characteristics of near-stoichiometric LiNbO3 single crystals were investigated. The switching field required for 180° ferroelectric domain reversal in the near-stoichiometric crystal at room temperature was 7.5 KV/mm. This is about one third of the switching field required for conventional LiNbO3 crystals. Domain reversal (180°) in near-stoichiometric LiNbO3 samples of 1.0 mm thickness has been achieved. Samples have been evaluated by second harmonic generation and conversion efficiencies of up to 32% have been obtained. Received: 8 November 2000 / Accepted: 29 January 2001 / Published online: 20 June 2001  相似文献   

12.
Congruently grown LiNbO3 single crystals show both high oxygen and lithium ion conductivity at temperatures above 500 °C. The high oxygen ion conductivity can be understood in terms of a certain amount of oxygen vacancies already present in congruently grown LiNbO3 single crystals. Thermal treatment of LiNbO3 produces additional oxygen vacancies. The absorption bands introduced by this procedure are investigated. It is found that the electrons which are generated during the reduction process are homogeneously distributed among all oxygen vacancies in the LiNbO3 single crystals. The electrocoloration phenomenon in LiNbO3 single crystals is due to the process of injection of lithium ions and electrons into LiNbO3 by a double charge mechanism. Investigations of the optical and electrical properties of electrocolored LiNbO3 crystals are reported. It is shown that the absorption spectra of thermally and electrochemically reduced samples are identical and that the origin of the absorption processes has to be therefore the same in both cases. That means, additional electrons produced by the double charge injection of lithium ions and electrons are also homogeneously distributed among the oxygen vacancies. This supports our hypothesis that a certain amount of oxygen vacancies has to be present already in as-grown LiNbO3 single crystals.  相似文献   

13.
Doping MgO, MnO and Fe2O3 in LiNbO3 crystals, tri-doped Mg:Mn:Fe:LiNbO3 single crystals were prepared by the conventional Czochralski method. The UV-vis absorption spectra were measured and the shift mechanism of absorption edge was also investigated in this paper. In Mg:Mn:Fe:LiNbO3 crystal, Mn and Fe locate at the deep level and the shallow level, respectively. The two-photon holographic storage is realized in Mg:Mn:Fe:LiNbO3 crystals by using He-Ne laser as the light source and ultraviolet as the gating light. The results indicated that the recording time can be significantly reduced for introducing Mg2+ in the Mg:Mn:Fe:LiNbO3 crystal.  相似文献   

14.
Conditions for the growth of LiNbO3:MgO single crystals by the Czochralski method were optimized. An upper limit of the molar MgO concentration in the melt for obtaining limpid, optically homogeneous crystals was determined. The Curie temperature was measured on precisely defined samples and so real MgO contents in the single crystal phase, distribution coefficients and longitudinal concentration profiles could be determined using this calibration curve. X-ray diffraction and optical absorption in the near infra-red and in the ultra-violet and visible regions were also studied on LiNbO3:MgO single crystals. Lattice constants and positions of the OH absorption band and of the short-wave absorption edge were determined on the basis of described measurements. Dependences of all the above-mentioned properties on the molar MgO concentration were found out. The simple model of microscopic mechanisms for explaining these experimental data was proposed.  相似文献   

15.
Congruent Zn(7 mol%):Ce:Cu:LiNbO3 single crystal was grown by the Czochralski method in air. The occupation mechanism of the Zn2+ was discussed by an infrared transmittance spectrum. The nonvolatile holographic recording in Zn(7 mol%):Ce:Cu:LiNbO3 single crystal was measured by two-photon fixed method. Zn(7 mol%):Ce:Cu:LiNbO3 single crystals present the faster recording time and higher light-induced scattering resistance ability comparing with Ce:Cu:LiNbO3 single crystals.  相似文献   

16.
A series of LiNbO3 crystals doped with various concentrations of ZnO and fixed concentrations of RuO2 and Fe2O3 have been grown by the Czochralski method from the congruent melts. The type of charge carriers was determined by Kr+ laser (476 nm) and He–Ne laser (633 nm). The results revealed that the holes were the dominant charge carriers at blue light irradiation. Dual-wavelength and two-color techniques were employed to investigate the nonvolatile holographic storage properties of Ru:Fe:LiNbO3 and Zn doped Ru:Fe:LiNbO3 crystals. The essential parameters of blue nonvolatile holographic storage in Zn:Ru:Fe:LiNbO3 crystals were enhanced greatly with the increase of Zn concentration. This indicates that the damage resistant dopants Zn2+ ions enhance the photorefractive properties at 476 nm wavelength instead of suppressing the photorefraction. The different mechanisms of blue photorefractive and nonvolatile holographic storage properties by dual wavelength recording in Zn:Ru:Fe:LiNbO3 crystals were discussed.  相似文献   

17.
Zuo Xiaoxi 《Optik》2005,116(7):361-364
Fe:LiNbO3 and In:Fe:LiNbO3 crystals were grown by Czochralski method. The absorption spectra were measured to investigate their defect structure. The photo damage resistance and photorefractive properties were measured. The photo damage resistance of the In:Fe:LiNbO3 crystal in which the In concentration is above the threshold value is one order of magnitude higher than that of the Fe:LiNbO3 crystal. The mechanisms of the violet shift of the absorption edge and the enhancement of the photorefractive effect of In:Fe:LiNbO3 crystals were investigated.  相似文献   

18.
Photorefractive properties and structural and optical homogeneity of (1) LiNbO3:Cu crystals ([Cu] = 0.015 mas %) grown from a congruent melt, (2) nominally pure stoichiometric crystals grown from a melt with 58.6 mol % of Li2O (LiNbO3stoich), and (3) nominally pure congruent crystals (LiNbO3congr) have been studied using the Raman-spectroscopy method with excitation in the UV, visible, and near-IR ranges; the laser-conoscopy method; and the electron paramagnetic resonance-spectroscopy method. In optically uniaxial LiNbO3 crystals, a weak optical biaxiality has been revealed, which is attributed to an insignificant deformation of the optical indicatrix. This deformation can be caused both by the initial structural inhomogeneity of crystals and by the photorefractive effect. It has been shown that, under the action of light, charge exchange of copper cations Cu2+ → Cu+ takes place in the crystal LiNbO3:Cu ([Cu] = 0.015 mas %). The LiNbO3:Cu crystal exhibits photorefractive properties not only because of the occurrence of intrinsic defects with electrons localized at them, as is the case with the LiNbO3stoich and LiNbO3congr crystals, but also due to the charge exchange of copper cations under the action of the laser radiation.  相似文献   

19.
A series of Mg:Ce:Cu:LiNbO3 crystals has been grown by Czochralski method. Their infrared transmittance spectra and ultraviolet-visible absorption spectra were measured and discussed to investigate their defect structure. The nonvolatile holographic recording of Mg:Ce:Cu:LiNbO3 crystals was characterized by the two-photon fixed method. We found that the recording time of Mg:Ce:Cu:LiNbO3 crystals became shorter and nonvolatile diffraction efficiency decreases with the increase of Mg doping concentration, especially doping with Mg approaches and exceeds the so-called threshold. And the nonvolatility vanishes when the concentration of MgO exceeds 4 mol%. The intrinsic and extrinsic defects were discussed to explain the nonvolatile holographic properties in the Mg:Ce:Cu:LiNbO3 crystals.  相似文献   

20.
We study dispersion of the dielectric function real part ε′ in the terahertz-frequency range for bulk and periodically poled congruent LiNbO3 and Mg:LiNbO3 crystals. The concentration of Mg in Mg:LiNbO3 samples was close to 5 mol%, which is the photorefractive threshold. Approximate expressions for extraordinary polariton dispersion dependence were obtained in the range 0.5–6.5 THz. The influence of Mg-dopant on the optical properties of crystals in the terahertz range is revealed. Changes of the defect structure of lithium niobate crystals are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号