首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nonlinear spectroscopy using harmonic generation in the extreme ultraviolet range became a versatile tool for the analysis of the optical, structural and morphological properties of matter. The carbon-contained materials have shown the advanced properties among other studied species, which allowed both the definition of the role of structural properties on the nonlinear optical response and the analysis of the fundamental features of carbon as the attractive material for generation of coherent short-wavelength radiation. We review the studies of the high-order harmonic generation by focusing ultrashort pulses into the plasmas produced during laser ablation of various organic compounds. We discuss the role of ionic transitions of ablated carbon-containing molecules on the harmonic yield. We also show the similarities and distinctions of the harmonic and plasma spectra of organic compounds and graphite. We discuss the studies of the generation of harmonics up to the 27th order (λ = 29.9 nm) of 806 nm radiation in the boron carbide plasma and analyze the advantages and disadvantages of this target compared with the ingredients comprising B4C (solid boron and graphite) by comparing plasma emission and harmonic spectra from three species. We also show that the coincidence of harmonic and plasma emission wavelengths in most cases does not cause the enhancement or decrease of the conversion efficiency of this harmonic.  相似文献   

2.
An experimental study of high-order harmonic generation in nitrogen molecules (N2) has been made using intense visible (616 nm) dye-laser pulses, where the harmonic radiation up to the 21st order is observed. The harmonic distribution represents a plateau that is preceded by an intensity minimum at the 7th order. The harmonic generation characteristics were atomic-like. It has been found that there are some similarities in the high-order harmonic generation characteristics for N2 and Ar, including the highest-order harmonics, harmonic distributions, and the influence of the multiphoton ionization on the high-order harmonic generation. These similarities are reasonably attributed to the energetic correspondence of excited levels and ionization potentials. It is pointed out that the ac Stark shift of excited levels and ionization potentials plays an important role also in the high-order harmonic generation in N2.  相似文献   

3.
We report on low-order harmonic generation utilising the plasmonic field enhancement in arrays of rod-type gold optical antennae. Furthermore, we examine their suitability to support high-order harmonic generation (HHG). The low-order harmonics are used as a tool to investigate the nonlinear properties of the antennae. Particular attention is paid to the thermal properties, which become significant at the peak intensities necessary for HHG. A theoretical model explains the experimental findings and enables future improvements. In experiments we observe up to the fifth harmonic order and measure a field enhancement sufficient to support high-order harmonic generation. Moreover, we find a damage threshold for the antennae.  相似文献   

4.
In this paper high-order harmonic generation (HHG) spectra and the ionization probabilities of various charge states of small cluster Na2 in the multiphoton regimes are calculated by using time-dependent local density approximation (TDLDA) for one-colour (1064 nm) and two-colour (1064 nm and 532 nm) ultrashort (25 fs) laser pulses. HHG spectra of Na2 have not the large extent of plateaus due to pronounced collective effects of electron dynamics. In addition, the two-colour laser field can result in the breaking of the symmetry and generation of the even order harmonic such as the second order harmonic. The results of ionization probabilities show that a two-colour laser field can increase the ionization probability of higher charge state.  相似文献   

5.
Basic optical properties of the new nonlinear crystal BiB3O6 (BIBO) are measured for second harmonic generation (SHG) of 1064 nm radiation. These properties include the effective nonlinearities for different phase matching orientations, the corresponding acceptance bandwidths and the optical losses. Effective nonlinearities of up to 3.2 pm/V (ϕ=90°, θ=-11°) and losses of less than 0.1 %/cm at 1064 nm indicate that BIBO is a promising new nonlinear crystal for SHG of 1064 nm radiation. A two-dimensional measurement with high spatial resolution of the SHG efficiency and the optical homogeneity, clearly demonstrate the high optical quality of BIBO crystals now available. PACS 42.65.Ky; 42.70.Mp  相似文献   

6.
通过数值求解激光驱动下电子在一维周期势场中运动的薛定谔方程,研究了晶体在激光场中发射的低阶谐波强度随激光波长的变化规律,结果表明,晶体发射低阶谐波强度随激光波长的变化规律与晶体发射高次谐波第一平台区域的变化规律不同.已有的研究表明晶体发射高次谐波第一平台区域的强度会随激光波长的增加而衰减,而我们发现晶体发射低阶谐波的强度会随激光波长的增加而增加.通过对晶体发射低阶谐波的时频分析、晶体价带能量变化与激光光子能量的关系,解释了晶体发射低阶谐波强度随激光波长增加而增加的原因.  相似文献   

7.
We have investigated the use of sub-10-fs near-infrared laser pulses to generate high-order harmonic radiation efficiently in the wavelength region between 30 to 10 nm. The ultrashort rise time of the driver pulses allows harmonics to be produced at low ionization levels and hence to grow coherently over propagation lengths becoming comparable to the XUV absorption lengths in the noble gas medium. As a result, absorption-limited harmonic generation has been extended to the 10-nm range for the first time. Harmonic conversion efficiencies of (3-4)᎒ъ in the range of 10-13 nm in neon and some two orders of magnitude higher at around 30 nm in argon have been obtained in simple gas tube targets under these conditions. Preliminary focusing tests with 13-nm harmonic radiation have been carried out with a specially designed zoneplate and a spherical Mo/Si multilayer mirror and have resulted in spot sizes of about 2 microns. Our experiments aim at paving the way to nonlinear optics in the soft-X-ray regime.  相似文献   

8.
ABSTRACT

Molecular high-order harmonic generation(MHOHG) is simulated for H+2 in the nonlinear nonperturbative regime of laser-molecule interactions with ultrashort intense circularly polarised laser pulses. It is shown that combinations of co-rotating or counter-rotating pulses produce laser-induced Coriolis forces with electron-parent ion recollisions, thus enhancing circularly polarised MHOHG, the source of circularly polarised attosecond pulses. Such pulses can be used to induce electron attosecond currents for the generation of attosecond magnetic field pulses, new tools for molecular attomagnetism.  相似文献   

9.
In this work, we study the limitations for overcoming the longitudinal piston error in a femtosecond tiled-grating compressor using nonlinear measurements like second harmonic generation. In particular, we observe the influence of this error when developing high-power laser experiments such as high-order harmonic generation. The generation of nonlinear processes with femtosecond pulses compressed in tiled-grating systems is studied. Special attention is paid to the role of the longitudinal piston error which is the most difficult to overcome in the compressor alignment. A complex spatio-temporal structure is expected to appear due to that misalignment. Both second harmonic generation in nonlinear crystals and high-order harmonic generation in gases are studied and a strong dependence with piston error is found, thus leading to a sub-micron modulation in the generated signal. In particular, the high sensitivity of the high-order harmonics to the longitudinal position allows one to use this processes for the accurate alignment of the compressor to few tens of nanometers.  相似文献   

10.
We demonstrate generation of coherent microjoule-scale, low-order harmonic supercontinua in the deep and vacuum ultraviolet (4-9 eV), resulting from the nonlinear transformations of near-single-cycle laser pulses in a gas cell. We show theoretically that their formation is connected to a novel nonlinear regime, holding promise for the generation of powerful deep-UV and vacuum ultraviolet subfemtosecond pulses. Our work opens the route to pump-probe spectroscopy of subfemtosecond-scale valence-shell phenomena in atoms, molecules, and condensed matter.  相似文献   

11.
We show that photoionization of wide band gap silicate glasses by infrared ultrashort laser pulses can occur without laser-induced damage. Two glasses are studied, fused silica and a multi-component silicate photo-thermo-refractive (PTR) glass. Experiments are performed by low numerical aperture focusing of ultrashort laser pulses (100 fsec<τ<1.5 psec) at the wavelengths 780 nm, 1430 nm, and 1550 nm. Filaments form inside both glasses and are visibly observable due to intrinsic luminescence. Keldysh’s theory of nonlinear photoionization is used to model the formation of filaments and values of about 1013 W cm−2 for the laser intensity and 1019 cm−3 for the free electron density are estimated for stable filaments to arise. Laser-induced damage is studied by the generation of a third harmonic from an interface created between a damage site and the surrounding glass matrix. It is found that third harmonic generation occurs only after several thousands of laser shots indicating that damage is not a single-shot phenomena. The ability to photoionize PTR glass without damage by ultrashort laser pulses offers a new approach for fabricating diffractive optical elements in photosensitive glass.  相似文献   

12.
MXenes, as a legendary family of 2D van der Waals nanosheets materials, are extensively studied due to their unique characteristics of broadband nonlinear optical response. In particular, MXenes have excellent nonlinear optical properties of very large nonlinear absorption coefficients and very large nonlinear refractive indexes, which have attracted people's great attentions to study the application of MXenes in photonics, electronics, and optoelectronics in recent years. However, the high-repetition-rate (HRR) ultrafast pulses are not explored based on these kinds of materials. MXene Ti3C2Tx saturable absorber (SA) based on micro-fiber is fabricated by optical deposition method. Here, MXene Ti3C2Tx SA is used to achieve 36th harmonic mode-locking with a repetition rate of 218.4 MHz, a central wavelength of 1566.9 nm, the pulse width of 850 fs, and the spectral width of 3.51 nm. The maximum average output power and pulse energy are 6.95 mW and 0.032 nJ, respectively. This research based on MXene Ti3C2Tx light modulator opens a bright avenue for advanced nonlinear photonics.  相似文献   

13.
We analyze the morphology of ablated nanoparticles after their laser-induced deposition on various substrates. We show that, at moderate laser intensity of the 210 ps pulses on the surface of nanoparticle-containing materials (<5×109 W?cm?2), the deposited material remains approximately the same as the initial nanoparticles. We compare these deposited nanoparticles with the debris obtained by the laser ablation of bulk material of the same origin as nanoparticles at different intensities of laser radiation. The presence of nanoparticles in laser plumes allowed for analyzing high-order nonlinear optical properties of nanoparticles. The efficient high-order harmonic generation was achieved during propagation of femtosecond pulses through such plasmas.  相似文献   

14.
Experiments and numerical simulations are used to study non-phasematched single-mode third harmonic generation occurring simultaneously with fs pulse spectral broadening in highly nonlinear fibre. Pump pulses around 100 fs at 1560 nm injected into sub-5 cm lengths of commercially-available highly nonlinear fibre are observed to undergo spectral broadening spanning over 700 nm at the -30 dB level, and to simultaneously generate third harmonic radiation around 520 nm. Simulations based on a generalized nonlinear envelope equation are shown to well reproduce the spectral structure of the broadened pump pulses and the generated third harmonic signal. PACS 42.65.-k; 42.81.Dp  相似文献   

15.
Second-order optical nonlinearities of zinc oxide (ZnO) nanorods grown on quartz substrate were determined by optical second harmonic generation (SHG) measurements at 1064 nm fundamental wavelength. The average length of the zinc oxide nanorods ranged from 50 nm to 700 nm. By employing the Maker fringes technique, we obtained the second-order nonlinear optical coefficients d333 and d311. Their magnitudes and ratio are compared with that of zinc oxide thin film fabricated by different techniques. We see variations of the second-order nonlinear optical coefficients with respect to the aspect ratio of the nanorods. This is attributed to local field effects. PACS 42.65.Ky; 78.67.-n; 81.07.-b  相似文献   

16.
We demonstrate that diffractive lenses (DLs) can be used as a simple method to tune the central wavelength of femtosecond pulses generated from second-order nonlinear optical processes in birefringent crystals. The wavelength tunability is achieved by changing the relative distance between the nonlinear crystal and the DL, which acts in a focusing configuration. Besides the many practical applications of the so-generated pulses, the proposed method might be extended to other wavelength ranges by demonstrated similar effects on other nonlinear processes, such as high-order harmonic generation.  相似文献   

17.
本文提出了一种在双色场中使用相干叠加态来提高高次谐波发射效率的方法. 我们首先通过在800nm基本激光脉冲上添加一束控制激光脉冲在理论上得到双色合成激光场;其次,通过求解一维含时薛定谔方程,计算得到了体系处于不同初始态时的高次谐波谱,并结合时频分布图对其微观机理进行分析. 计算结果表明,使用相干叠加态作为体系的初始态,通过调节两束激光的相对相位可以有效实现提高高次谐波的发射效率的目的.  相似文献   

18.
We demonstrate broadband second harmonic generation of low-energy pulses produced by injecting two single-frequency lasers into a highly nonlinear fiber. Full nonlinear conversion of the corresponding spectra, consisting of broadband (∼200 nm) optical frequency combs at ∼1580 nm, were obtained by using conventional birefringence phase-matching in two BIBO crystals (2-mm and 100-μm long) with a normal incidence configuration. The crystals were not tilted and the pulses were not compressed. This broadband conversion results from the large phase-matching bandwidth of the nonlinear BIBO crystals at ∼1550 nm, but also seems to be a consequence of a fundamental comb with small spectral phase variation.  相似文献   

19.
在双色场中使用相干叠加态来提高高次谐波的发射   总被引:1,自引:0,他引:1  
本文提出了一种在双色场中使用相干叠加态来提高高次谐波发射效率的方法.我们首先通过在800 nm基本激光脉冲上添加一束控制激光脉冲在理论上得到双色合成激光场;其次,通过求解一维含时薛定谔方程,计算得到了体系处于不同初始态时的高次谐波谱,并结合时频分布图时其微观机理进行分析.计算结果表明,使用相干叠加态作为体系的初始态,通过调节两束激光的相对相位可以有效实现提高高次谐波的发射效率的目的.  相似文献   

20.
A novel passively gigahertz harmonic mode-locked all-fiber laser based on hybrid fiber structure (single-mode fiber–graded-index multimode fiber–single-mode fiber (SMS)) is proposed SMS, which coils on the paddles of polarization controller (PC), is demonstrated to modulate the temporal intensity for mode-locking. The nonlinear absorption properties of the optical switch are controllable by adjusting the paddles of PC; such an ultrafast optical switch enables the wavelength switchable harmonic mode-locking operation. Ultrafast pulses with 1.9 ps at 1558.41 nm and 0.95 ps at 1563.08 nm are generated. The maximum repetition rate of the laser up to 1.127 GHz harmonic of fundamental repetition mode-locking at 1563.08 nm, corresponding to 880 order, and the output power is 4.2 mW. Considering its superiority in terms of low cost, easy integration, and high reliability, the findings validate that SMS can be used in harmonic mode-locking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号