首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A theory of anisotropic optical local-field effects caused by resonantly polarizable small particles in multilayer polarizable media is developed. Considered is the model of a rectangular lattice of ellipsoidal nanoparticles with taking account of “image forces” at an interface in a layered medium. The lattice sums for anisotropic dipolar interactions are found using the Green’s function method in the quasi-point dipole approximation, and the effective polarizabilities of particles in a layer located near an interface are calculated self-consistently. The manifestation of an anisotropic local field of nanoparticles in optical radiation and propagation of evanescent waves responsible for optical near-field effects is investigated. Applications of the obtained results in the polar magneto-optical Kerr effect and reflectance anisotropy spectroscopy in propagating the polarized light along the normal to layers are considered. The resonant features in the spectra due to enhancement of the optical effects under excitation of surface (local) plasmons in nanoparticles of a noble metal are studied.  相似文献   

2.
We report on the investigation of surface-plasmon excitation of anisotropic WS(2) hollow nanoparticles in a near-field geometry by means of a scanning transmission electron microscope. The shell thickness influence on the electron-energy-loss-spectroscopy spectra is experimentally observed and is analyzed within a classical dielectric formalism. As for the isotropic case, we evidence one symmetric (tangential) and one antisymmetric (radial) mode. We point out the intriguing fact that, for the anisotropic case, one can relate these modes to the interband transition of the in-plane component of the dielectric tensor and to the bulk-plasmon energy of the out-of-plane component.  相似文献   

3.
The images of magnetic and nonmagnetic nanoparticles obtained by scanning near-field microscopy in the photon collection mode are numerically simulated. A theoretical approach that uses tensor electrodynamic Green’s functions to find the optical near field in a given observation scheme is considered. Typicalimages of nanoparticles with various shapes are obtained by numerical simulation. Subject to boundary conditions, the plane of polarization is shown to change at topographic features (edges and angles) of objects studied. This makes the observation of the magnetic structure of a nanoparticle with a magnetooptic method difficult. The near-field study of the magnetization distribution in homogeneous thin films appears to be more effective, since the rotation of plane of polarization is associated primarily with the magnetic properties of the sample in this case.  相似文献   

4.
Spectroscopic near-field imaging of single silica-shell/Au-core and pure silica nanoparticles deposited on a silicon substrate is performed in the infrared wavelength range (λ = 9–11 μm) using scattering-type scanning near-field optical microscopy (s-SNOM). By tuning the wavelength of the incident light, we have acquired information on the spectral phonon–polariton resonant near-field interactions of the silica-shell/Au-core and pure silica nanoparticles with the probing tip. We made use of the enhanced near-field coupling between the high index Au-core and the probing tip to achieve spectral near-field contrast of the thin silica coating (thickness < 10 nm). Our results show that spectroscopic imaging of thin coating layers and complex core–shell nanoparticles can be directly performed by s-SNOM.  相似文献   

5.
Observation of surface-plasmon phenomena that are dependent upon the handedness of the circularly polarized incident light (spin) is presented. The polarization-dependent near-field intensity distribution obtained in our experiment is attributed to the presence of a geometric phase arising from the interaction of light with an anisotropic and inhomogeneous nanoscale structure. A near-field vortex surface mode with a spin-dependent topological charge was obtained in a plasmonic microcavity. The remarkable phenomenon of polarization-sensitive focusing in a plasmonic structure was also demonstrated.  相似文献   

6.
<正>The influences of the anisotropy of the outer spherically anisotropic(SA) layer on the far-field spectra and nearfield enhancements of the silver nanoshells are investigated by using a modified Mie scattering theory.It is found that with the increase of the anisotropic value of the SA layer,the dipole resonance wavelength of the silver nanoshell first increases and then decreases,while the local field factor(LFF) reduces.With the decrease of SA layer thickness, the dipole wavelength of the silver nanoshell shows a distinct blue-shift.When the SA layer becomes very thin,the modulations of the anisotropy of the SA layer on the plasmon resonance energy and the near-field enhancement are weakened.We further find that the smaller anisotropic value of the SA layer is helpful for obtaining the larger near-field enhancement in the Ag nanoshell.The geometric average of the dielectric components of the SA layer has a stronger effect on the plasmon resonance energy of the silver nanoshell than on the near-field enhancement.  相似文献   

7.
Diffusion dynamics of gold nanoparticles (GNPs) was studied by fluorescence correlation spectroscopy (FCS). The fluorescence was studied by exciting the particles by green laser (532 nm), which is far from longitudinal plasmon band of nanorods. Transmission electron microscope (TEM) and UV-Vis-NIR spectrometer were used to characterize the gold nanoparticles. Despite their low quantum yields, GNPs possess the native fluorescence. The excellent antiphotobleaching behavior of gold nanorods leads to prospects of using FCS for its detailed studies. Using FCS, dynamic information can be extracted from the fluorescence fluctuations in the system by autocorrelation function. Maximum entropy method (MEMFCS) was used to identify the number of distinct components present in the system. The particle sizes obtained from FCS were found to be higher (by few orders of magnitude) compared to TEM analysis. This might be due to the possible contributions from cetyltrimethyl ammonium bromide (CTAB) capping in the system.  相似文献   

8.
We present recent experimental and theoretical advances in the selective nanovolume Raman spectroscopy of nanoparticles. Our setup is based on previously available microspectrometry imaging systems for working in the near-field domain combined with a stigmatic solid immersion lens. By spectrally selecting nanoparticles, we registered the spatial distribution of the emitted photons in x, y, z vectors to determine the position in the near-field domain. This near-field capability is applied to resolve local variations unambiguously in the Raman spectra for nanoparticles with unity throughput.  相似文献   

9.
It is known that silver (Ag) nanoparticles are attractive due to their novel and mild chemical and physical properties. In this research, anisotropic mono-dispersed silver nanoparticles are synthesized via a simple chemical reduction method and assisted by Daxad 19 surfactant. The reactant temperatures and weight ratios of the chemical constituents play a key role in controlling the hybrid shaping mechanism. The results indicate that the reduction rate of Ag+ to Ag0 nanoparticles is enhanced significantly with increasing weight ratios of Daxad 19 and AgNO3 under controlled reactant temperature. The results show that the as-prepared silver nanoparticles are well-dispersed and uniform in size and shape. The dimensions of the particles are easily controlled. A comparison between experimental absorbance UV-visible spectra and simulated spectra from Mie's Scattering Theory is carried out. It is observed that the simulated spectrum confirms well with the optical behaviour of the experimental spectra.  相似文献   

10.
Liu C  Park SH 《Optics letters》2005,30(13):1602-1604
In the vicinity of a rough interface under normal illumination the speckle field has been found to be anisotropic; that is, its correlation length is much larger in the direction of polarization than in the perpendicular direction, forming stripe-shaped speckle patterns in the near-field region. Furthermore, with increasing distance from the interface, the anisotropy of the near-field speckles decays rapidly, while the speckle size increases drastically in all directions. Based on detailed analysis, it was found that the anisotropy of the near-field speckle patterns can be attributed to polarization-dependent coupling among the evanescent waves from different surface diffusers.  相似文献   

11.
We demonstrate nanoscale resolved infrared imaging of single nanoparticles employing near-field coupling in the nanoscopic gap between the metal tip of a scattering-type near-field optical microscope and the substrate supporting the particles. Experimental and theoretical evidence is provided that highly reflecting or polariton-resonant substrates strongly enhance the near-field optical particle contrast. Using Si substrates we succeeded in detecting Au particles as small as 8 nm (相似文献   

12.
A refined discussion of the near-field scattering of spherical nanoparticles and the electromagnetic fields close to the particle surface is given. New results for the dependence on the distance from the surface and the angular distribution of the scattered light in the near-field are given. It will be shown that the radial component of the electric field leads to striking differences in the phase functions in the near-field and the far-field. Exemplary computations are presented for Ag and Au particles with different size. In a second part the discussion is extended to assemblies of spherical Ag and Au nanoparticles. It will be shown that large near-fields at wavelengths commonly used in SERS experiments are obtained for aggregates. In the near-field scattering intensity “hot spots” mark regions between particles in the aggregate where the near-field is particularly high. Received: 4 May 2001 / Revised version: 20 July 2001 / Published online: 19 September 2001  相似文献   

13.
We theoretically report a method of the near-field double-spot subwavelength-photolithography by attaching an optical anisotropic metamaterial (OAM) and polymer composite film to a solid immersion lens (SIL). The OAM made up of metallic nanowires embedded in a dielectric matrix can realize all-angle negative refraction for TM waves in the visible regime. When the SIL near-field photolithography system with a nanoscale OAM-polymer composite film is illuminated by a linearly-polarized beam, the longitudinal component of electric field in the focal region of the objective is largely enhanced by surface plasmons and the transverse component is suppressed. Consequently, a spot in the conventional near-field photolithography system with a bare SIL is split into two spots with subwavelength spacing. If the present focusing system with an OAM-polymer film is used to near-field photolithography, a subwavelength-spacing (wavelength/5) and deep photoetching pattern can be achieved and, compared with the conventional single-spot photolithography, the photoetching speed can be doubled.  相似文献   

14.
游荣义  黄晓菁 《计算物理》2013,30(4):582-586
基于均匀外电场中金属纳米半球颗粒按一定对称性从平面衬底生长出的表面结构,建立纳米半球颗粒表面附近近场电势的理论模型.采用数值计算方法得到近场电势的空间分布,并以三维曲面的形式给出.结果表明:电势分布呈现明显的几何对称性.结果为解释与纳米结构薄膜表面有关的各种异常现象提供依据,为纳米结构薄膜材料的应用研究提供参考.  相似文献   

15.
An exact analytical solution of the self-consistent equation for the local field is used to calculate the near-field optical images of pyramid-like nano-objects placed at a surface of a solid. The diagram method developed previously for near-field image formation is generalized in order to describe layered objects, which are treated as many-body systems. The near-field optical images of triangular and square pyramids are calculated for the illumination configuration as well as those of triangular and square prisms. It is found that the near-field images of nanoparticles having the dielectric constant close to that of the substrate change rapidly and in a complicated manner with the probe–sample distance.  相似文献   

16.
We use near-field interference spectroscopy with a broadband femtosecond, white-light probe to study local surface plasmon resonances in flat gold nanoparticles (FGNPs). Depending on nanoparticle dimensions, local near-field extinction spectra exhibit none, one, or two resonances in the range of visible wavelengths (1.6-2.6 eV). The measured spectra can be accurately described in terms of interference between the field emitted by the probe aperture and the field reradiated by driven FGNP surface plasmon oscillations. The measured resonances are in good agreement with those predicted by calculations using discrete dipole approximation. We observe that the amplitudes of these resonances are dependent upon the spatial position of the near-field probe, which indicates the possibility of spatially selective excitation of specific plasmon modes.  相似文献   

17.
We adapt the coupled dipole method (CDM) to simulate light scattering by arbitrary dielectric structures that are periodic along two directions and embedded in a multilayer system. We calculate the near-field existing above isotropic gratings and provide comparisons with the classical Fourier modal method. We show that the CDM can deal easily with multilayer cross-gratings made of anisotropic material.  相似文献   

18.
林蕴  申烁  高祥  汪炼成 《中国物理 B》2022,31(1):14214-014214
The optical response of metal nanoparticles can be modified through near-field or far-field interaction,yet the lattice plasmon modes(LPMs)considered can only be excited from the latter.Here instead,we present a theoretical evaluation for LPM excitation via the near-field coupling process.The sample is an arrayed structure with specific units composed of upper metal disks,a lower metal hole and a sandwiched dielectric post.The excitation process and underlying mechanism of the LPM and the influence of the structure parameters on the optical properties have been investigated in detail by using a finite-difference time-domain(FDTD)numerical method.Our investigation presented here should advance the understanding of near-field interaction of plasmon modes for LPM excitation,and LPMs could find some potential applications,such as in near-field optical microscopes,biosensors,optical filters and plasmonic lasers.  相似文献   

19.
叶松  王向贤  侯宜栋  张志友  杜惊雷 《物理学报》2014,63(8):87802-087802
实验和理论研究了不同自组装密度的银纳米颗粒膜对8-羟基喹啉铝(Alq_3)光致发光的影响,结果表明:Alq_3光致发光的表观增强和发射增强因子与银纳米颗粒膜密度呈正相关关系,最大值约为3.2和13;理论计算表明银纳米颗粒膜对Alq_3光致发光的量子效率和发射的最大增强因子约为1.4和15,对比实验和理论结果,金属纳米颗粒膜的近场场强增强是导致Alq3光致发光发射强度增强的主要因素,且Alq_3光致发光效率与Alq_3相对银纳米颗粒的分布和"热点"区域面积覆盖率有关。  相似文献   

20.
We present near-field distributions around an isolated 800-nm silica or silicon nanoparticle, and nanoparticle arrays of 800-nm silica or silicon nanoparticles, on a silicon substrate by the finite-difference time-domain method when 800-nm light is irradiated obliquely to the substrate. Nanopatterning mediated with the nanoparticle system is promising for large-area, high-throughput patterning by using an enhanced localized near-field ablation by the nanoscattered light lens effect. The irradiation area cannot be extended for silica nanoparticles, because the optical field enhancement factor is low. Gold nanoparticles can generate highly enhanced near fields, although at present there are no useful ways to arrange the gold nanoparticles on the substrate at a high throughput. Silicon nanoparticles with high dielectric permittivity have optical characteristics of both silica and gold nanoparticles. The particle arrangement on the Si substrate is technically easy using a wet pulling process. From the calculation, high optical field intensity is acquired with oblique s-polarized irradiation to the substrate under silicon nanoparticle arrays, and the intensity is almost the same as that under gold nanoparticle arrays under the same condition. With this method, high-throughput nanopatterning for a large area would be achievable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号