首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 81 毫秒
1.
A thin-disc Nd:GdVO4 laser in multi-pass pumping scheme was developed. Continuous-wave output power of 13.9 W at 1.06 μm for an absorbed power at 808 nm of 22 W was demonstrated from a 250-μm thick, 0.5-at.% Nd:GdVO4 in a 4-pass pumping; the slope efficiency in absorbed power was 0.65, or 0.47 in input power. Output performances were also investigated under diode laser pumping at 879 nm, directly into the emitting 4F3/2 level: maximum power of 3.6 W was obtained at 6.2 W of absorbed power with 0.69 slope efficiency. Compared with pumping at 808 nm, into the highly absorbing 4F5/2 level, improvements of laser parameter in absorbed power (increase of slope efficiency, decrease of threshold) were obtained, showing the advantages of the pumping into the emitting level. However, the laser performances expressed vs. the incident power were modest owing to the low absorption efficiency at 879 nm. Thus, increased number of passes of the medium would be necessary in order to match the performances in input power obtained under 808-nm pumping.  相似文献   

2.
An active Q-switched diode-end-pumped Nd:YAG laser is reported with 2.9 W output power on the 4F3/2 → 4I9/2 transitions at a pump power of 24 W. With intracavity frequency doubling using a 20-mm-long LBO, a maximum blue output power of 2.25 W is achieved at a repetition rate of 23 kHz. The conversion efficiency from the corresponding Q-switched fundamental output to blue output is 96%. The peak power of the Q-switched blue pulse is up to 610 W with 160 ns pulse width. The fluctuation of the blue output power is less than 4.0% at the maximum output power.  相似文献   

3.
We reported the Ho:GdVO4 laser pumped by Tm-doped laser with a fiber Bragg grating. 2.03 W continuous-wave Ho:GdVO4 laser output power is obtained under 10.5 W incident pump power, with the optical-to-optical conversion efficiency and slope efficiency of 19.3% and 32.3%, respectively, at 7 °C. We can see that, the lower the temperature is, the better the laser output character is. The beam quality factor is M2 ∼ 1.29 measured by the traveling knife-edge method.  相似文献   

4.
We present theoretical and experimental investigations on ground-state direct pumping at 869 nm into the emitting level 4F3/2 of end-pumped quasi-three-level Nd:YAG lasers operating at 946 nm. We have demonstrated, what we believe is for the first time, a Nd:YAG laser at 946 nm directly pumped by diodes and obtained 1.6 W of output power.  相似文献   

5.
Combining the advantages of diode-end-pumped Nd: YVO4 and diode-side-pumped Nd: YAG amplifiers, a high average power and high beam quality picosecond laser is designed. The system delivers a picosecond laser with average power of 43.4 W and good beam quality of M2 < 1.7. By focusing the high power picosecond laser in LBO crystal, 532 nm green laser with maximal power of 20.8 W is generated and the conversion efficiency of second-harmonic generation reaches 56.4% when 17.7 W green laser obtained from the fundamental frequency laser with power of 31.4 W and beam quality of M2 < 1.25.  相似文献   

6.
The influence of the direct pumping into the 4F3/2 emitting level on the output characteristics of continuous-wave (CW) pumped, passively or actively (acoustooptic, AO) Q-switched Nd lasers is discussed. In case of passive Q-switching by Cr4+:YAG saturable absorber (SA) crystal, the change of pumping wavelength from 0.81 μm into the highly-absorbing 4F5/2 level to 0.88 μm into the 4F3/2 level of Nd does not modify the energy of the Q-switch pulse, but increases the pulse repetition rate and the laser average power for the same absorbed pump power. This is demonstrated with 0.81 and 0.88 μm CW laser diode-pumped Nd:YAG and Nd-vanadate lasers with average output power in the watt-level range at 1.06 μm. The effect is explained by the control of passive Q-switching by the intracavity photon flux that is influenced by the pump wavelength and by the initial transmission of the SA crystal. On the other hand, it is discussed and experimentally proved that due to the possibility to control externally the frequency of switching, in case of the AO Q-switched Nd laser the change of the pump wavelength from 0.81 to 0.88 μm increases the pulse energy for a fixed frequency, leading to a corresponding increase of the average laser power.  相似文献   

7.
Simultaneous self-Q-switched and mode-locked have been demonstrated in a diode-pumped Nd,Cr:YAG laser. For the first time as we know, almost 100% modulation depth has been achieved at an intracavity intensity of 5.6 × 105 W/cm2. The maximum average output power of 6.52 W corresponding to a slope efficiency of 30% is obtained at 1064 nm. The laser produces high-quality pulses in a TEM00-mode at the pump power of 16.5 W. The pulse duration of the mode-locked pulses is about 600 ps with 136 MHz repetition rate.  相似文献   

8.
We have demonstrated an efficient diode-pumped passively Q-switched Nd:GdVO4 laser working at 1342 nm by using an uncoated V3+:YAG crystal as the saturable absorber, in which both a-cut and c-cut Nd:GdVO4 crystals are employed. At the maximum absorbed pump power of 9.45 W, the maximum average output power can reach 519 mW and 441 mW corresponding to the output coupler with different transmission of 3% and 10% by using an a-cut Nd:GdVO4 crystal at 1342 nm, while the shortest pulse duration could be as low as 21.7 ns and 22.3 ns with the repetition rate of 48.41 kHz and 53.25 kHz by using a c-cut Nd:GdVO4 crystal, corresponding to the output coupler with different transmission of 3% and 10% at 1342 nm, and the single Q-switched pulse energy are 6.67 uJ and 7.06 uJ, the pulse peak power are 307 W and 316 W, respectively. The experimental results show that c-cut Nd:GdVO4 laser can generate shorter pulse with higher peak power in comparison with a-cut one.  相似文献   

9.
Single-frequency diode lasers have been frequency stabilized to 1.5 kHz Allan deviation over 0.05-50 s integration times, with laser frequency drift reduced to less than 1.4 kHz/min, using the frequency reference provided by an ultranarrow inhomogeneously broadened Er3+:4I15/24I13/2 optical absorption transition at a vacuum wavelength of 1530.40 nm in a low-strain LiYF4 crystal. The 130 MHz full-width at half-maximum (FWHM) inhomogeneous line width of this reference transition is the narrowest reported for a solid at 1.5 μm. Strain-induced inhomogeneous broadening was reduced by using the single isotope 7Li and by the very similar radii of Er3+ and the Y3+ ions for which it substitutes. To show the practicability of cryogen-free cooling, this laser stability was obtained with the reference crystal at 5 K; moreover, this performance did not require vibrational isolation of either the laser or crystal frequency reference. Stabilization is feasible up to T=25 K where the Er3+ absorption thermally broadens to ∼500 MHz. This stabilized laser system provides a tool for interferometry, high-resolution spectroscopy, real-time optical signal processing based on spatial spectral holography and accumulated photon echoes, secondary frequency standards, and other applications such as quantum information science requiring narrow-band light sources or coherent detection.  相似文献   

10.
The continuous-wave high-efficiency laser emission of Nd:GdVO4 at the second-harmonic of 456 nm obtained by intracavity frequency doubling with an BiB3O6(BiBO) nonlinear crystal is investigated under pumping by diode laser at 880 nm into emitting level 4F3/2. About 3.8 W at 456 nm with M2 = 1.4 was obtained from a 5 mm-thick 0.4 at.% Nd:GdVO4 laser medium and a 12 mm-long BiBO nonlinear crystal in a Z-type cavity for 13.9 W absorbed pump power. An optical-to-optical efficiency with respect to the absorbed pump power was 0.274. Comparative results obtained for the pump with diode laser at 808 nm, into the highly-absorbing 4F5/2 level, are given in order to prove the advantages of the 880 nm wavelength pumping.  相似文献   

11.
Two new Nd3+ doped crystals show laser activity between the 4F3/2 and 4I9/2 levels. Diode pumped emission of Nd:GSAG at 942 nm wavelength with 950 mW output power and 14% optical to optical efficiency as well as laser emission of Nd:YGG at 935 nm with 700 mW output power and 11% efficiency have been obtained. These wavelengths are useful for water vapour absorption measurements.  相似文献   

12.
Yong-liang Li  Yu-lan Zhang 《Optik》2011,122(8):743-745
A sum-frequency yellow-green laser at 554.9 nm is reported by this paper, 946 nm wavelength is obtained from 4F3/2-4I9/2 transition in Nd:YAG and 1342 nm wavelength is obtained from 4F3/2-4I13/2 transition in Nd:YVO4. Using a doubly folded-cavity type-II critical phase matching KTP crystal intra cavity to make 946 nm laser from Nd:YAG and 1342 nm laser from Nd:YVO4 frequency summed, with incident pumped power of 30 W in Nd:YAG and 20 W in Nd:YVO4, TEM00 mode yellow-green laser at 554.9 nm at 1.15 W is obtained and its M2 factor is less than 1.22. The experimental results show that the Nd:YAG and Nd:YVO4 crystals intra-cavity sum-frequency mixing is an effective method for yellow-green laser and it can be applied to other two laser crystals to obtain more all-solid-state lasers with different wavelengths.  相似文献   

13.
An organo-metallic complex, [(CH3)4N][Ni(dmit)2] (dmit2− = (1,3-dithiole-2-thione-4,5-dithiolate), abbreviated as MeNi, is synthesized. The nonlinear optical absorption properties of MeNi dissolved in acetone have been studied using the open-aperture Z-scan technique with 40 ps pulse width at 1064 nm and 1 ns, 15 ns pulse width at 1053 nm, respectively. Strong saturable absorption has been found when the sample solution is irradiated by 40 ps and 1 ns laser pulses. While irradiated with 15 ns laser pulse, a stronger reverse saturable absorption has been found. The nonlinear optical absorption coefficients are −1.03 × 10−11 m/W, −1.85 × 10−11 m/W and 3.84 × 10−10 m/W, respectively. The mechanism responsible for the difference between the results is analyzed. All the results suggest that this material may be a promising candidate for the application to laser pulse compression in the near-infrared waveband.  相似文献   

14.
A comparative study of Nd:GdVO4 and Nd:YVO4 crystal lasers pumped by a fiber-coupled diode array has been conducted at the 4F3/2-4I9/2 transitions wavelengths of 912 nm and 914 nm, as well as when intracavity frequency-doubled to 456 nm and 457 nm, respectively. At the fundamental wavelength of 912 nm and second harmonic wavelength of 456 nm, maximum output powers from the Nd:GdVO4 crystal laser were 7.85 W and 4.6 W at a pump power of 29 W. All the results obtained from Nd:GdVO4 were superior to those of Nd:YVO4, indicating that Nd:GdVO4 is a more efficient laser crystal than Nd:YVO4 for laser operation on the 4F3/2-4I9/2 transitions.  相似文献   

15.
We describe a compact, broadly tunable, continuous-wave (cw) Cr2+:ZnSe laser pumped by a thulium fiber laser at 1800 nm. In the experiments, a polycrystalline ZnSe sample with a chromium concentration of 9.5 × 1018 cm−3 was used. Free-running laser output was around 2500 nm. Output couplers with transmissions of 3%, 6%, and 15% were used to characterize the power performance of the laser. Best power performance was obtained with a 15% transmitting output coupler. In this case, as high as 640 mW of output power was obtained with 2.5 W of pump power at a wavelength of 2480 nm. The stimulated emission cross-section values determined from laser threshold data and emission measurements were in good agreement. Finally, broad, continuous tuning of the laser was demonstrated between 2240 and 2900 nm by using an intracavity Brewster cut MgF2 prism and a single set of optics.  相似文献   

16.
A simultaneous self-Q-switched and mode-locked diode-pumped 946 nm laser by using a Cr,Nd:YAG crystal as gain medium as well as saturable absorber is demonstrated for the first time as we know. The maximum average output power of 751 mW with a slope efficiency of 18.38% is obtained at an intra-cavity average peak power intensity of 4.83 × 106 W/cm2. Under this circumstance, the repetition rate of Q-switched envelopes is 9.63 kHz and the pulse width is about 460 ns. Almost 100% mode-locked modulation depth is obtained at all time in the experiment process whether the incident pump power is low or high. The repetition rate of mode-locked pulses within a Q-switched envelope is 135.13 MHz and the mode-locked pulse width is within 600 ps. The laser produces high-quality pulses in TEM00-mode in the simultaneous self-Q-switched and mode-locked experiment.  相似文献   

17.
We reported an actively Q-switched, intracavity Nd3+:YVO4 self-Raman laser at 1176 nm with low threshold and high efficiency. From the extracavity frequency doubling by use of LBO nonlinear crystal, over 3.5 mW, 588 nm yellow laser is achieved. The maximum Raman laser output at is 182 mW with 1.8 W incident pump power. The threshold is only 370 mW at a pulse repetition frequency of 5 kHz. The optical conversion efficiency from incident to the Raman laser is 10%, and 1.9% from Raman laser to the yellow.  相似文献   

18.
A diode-end-pumped passively Q-switched 912 nm Nd:GdVO4/Cr4+:YAG laser and its efficient intracavity frequency-doubling to 456 nm deep-blue laser were demonstrated in this paper. Using a simple V-type laser cavity, pulsed 912 nm laser characteristics were investigated with two kinds of Cr4+:YAG crystal as the saturable absorbers, which have the different initial transmissivity (TU) of 95% and 90% at 912 nm. When the TU = 95% Cr4+:YAG was used, as much as an average output power of 2.8 W 912 nm laser was achieved at an absorbed pump power of 34.0 W, and the pulse width and the repetition rate were ∼ 40.5 ns and ∼ 76.6 kHz, respectively. To the best of our knowledge, this is the highest average output power of diode-pumped passively Q-switched Nd3+-doped quasi-three-level laser. Employing a BiBO as the frequency-doubling crystal, 456 nm pulsed deep-blue laser was obtained with a maximum average output power of 1.2 W at a repetition rate ∼ 42.7 kHz.  相似文献   

19.
This paper reports on the absorption, visible and near-infrared luminescence properties of Nd3+, Er3+, Er3+/2Yb3+, and Tm3+ doped oxyfluoride aluminosilicate glasses. From the measured absorption spectra, Judd-Ofelt (J-O) intensity parameters (Ω2, Ω4 and Ω6) have been calculated for all the studied ions. Decay lifetime curves were measured for the visible emissions of Er3+ (558 nm, green), and Tm3+ (650 and 795 nm), respectively. The near infrared emission spectrum of Nd3+ doped glass has shown full width at half maximum (FWHM) around 45 nm (for the 4F3/24I9/2 transition), 45 nm (for the 4F3/24I11/2 transition), and 60 nm (for the 4F3/24I13/2 transition), respectively, with 800 nm laser diode (LD) excitation. For Er3+, and Er3+/2Yb3+ co-doped glasses, the characteristic near infrared emission bands were spectrally centered at 1532 and 1544 nm, respectively, with 980 nm laser diode excitation, exhibiting full width at half maximum around 50 and 90 nm for the erbium 4I13/24I15/2 transition. The measured maximum decay times of 4I13/24I15/2 transition (at wavelength 1532 and 1544 nm) are about 5.280 and 5.719 ms for 1Er3+ and 1Er3+/2Yb3+ (mol%) co-doped glasses, respectively. The maximum stimulated emission cross sections for 4I13/24I15/2 transition of Er3+ and Er3+/Yb3+ are 10.81×10−21 and 5.723×10-21 cm2. These glasses with better thermal stability, bright visible emissions and broad near-infrared emissions should have potential applications in broadly tunable laser sources, interesting optical luminescent materials and broadband optical amplification at low-loss telecommunication windows.  相似文献   

20.
Intense blue upconversion emission at 480 nm has been obtained at room temperature in Tm3+-Nd3+ co-doped Ta2O5 channel waveguides fabricated on a Si substrate, when the sample is excited with an infrared laser at 793 nm. The upconversion mechanism is based on the radiative relaxation of the Nd3+ ions (4F3/2 → 4I11/2) at about 1064 nm followed by the absorption of the emitted photons by Tm3+ ions in the 3H4 excited state. A coefficient of energy transfer rate as high as 3 × 10−16 cm3/s has been deduced using a rate equation analysis, which is the highest reported for Tm-Nd co-doped systems. The confinement of the 1064 nm emitted radiation in the waveguide structure is the main reason of the high energy transfer probability between Nd3+ and Tm3+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号