首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Synchrotron infrared beamlines are powerful tools on which to perform spectroscopy on microscopic length scales but require working with large bending‐magnet source apertures in order to provide intense photon beams to the experiments. Many infrared beamlines use a single toroidal‐shaped mirror to focus the source emission which generates, for large apertures, beams with significant geometrical aberrations resulting from the shape of the source and the beamline optics. In this paper, an optical layout optimized for synchrotron infrared beamlines, that removes almost totally the geometrical aberrations of the source, is presented and analyzed. This layout is already operational on the IR beamline of the Brazilian synchrotron. An infrared beamline design based on a SOLEIL bending‐magnet source is given as an example, which could be useful for future IR beamline improvements at this facility.  相似文献   

2.
Vacuum‐ultraviolet radiation delivered by bending‐magnet sources is used at numerous synchrotron radiation facilities worldwide. As bending‐magnet radiation is inherently much less collimated compared with undulator sources, the generation of high‐quality intense bending‐magnet vacuum‐ultraviolet photon beams is extremely demanding in terms of the optical layout due to the necessary larger collection apertures. In this article, an optimized optical layout which takes into account both the optical and electron beam properties is proposed. This layout delivers an improved beam emittance of over one order of magnitude compared with existing vacuum‐ultraviolet bending‐magnet beamlines that, up to now, do not take into account electron beam effects. The arrangement is made of two dedicated mirrors, a cylindrical and a cone‐shaped one, that focus independently both the horizontal and the vertical emission of a bending‐magnet source, respectively, and has been already successfully applied in the construction of the infrared beamline at the Brazilian synchrotron. Using this scheme, two vacuum‐ultraviolet beamline designs based on a SOLEIL synchrotron bending‐magnet source are proposed and analysed. They would be useful for future upgrades to the DISCO beamline at SOLEIL and could be readily implemented at other synchrotron radiation facilities.  相似文献   

3.
Micro‐focusing optical devices at synchrotron beamlines usually have a limited acceptance, but more flux can be intercepted if such optics are used to focus secondary sources created by the primary optics. Flux throughput can be maximized by placing the secondary focusing optics close to or exactly at the secondary source position. However, standard methods of beamline optics analysis, such as the lens equation or matching the mirror surface to an ellipse, work poorly when the source‐to‐optics distance is very short. In this paper the general characteristics of the focusing of beams with Gaussian profiles by a `thin lens' are analysed under the paraxial approximation in phase space, concluding that the focusing of a beam with a short source‐to‐optics distance is distinct from imaging the source; slope errors are successfully included in all the formulas so that they can be used to calculate beamline focusing with good accuracy. A method is also introduced to use the thin‐lens result to analyse the micro‐focusing produced by an elliptically bent trapezoid‐shaped Kirkpatrick–Baez mirror. The results of this analysis are in good agreement with ray‐tracing simulations and are confirmed by the experimental results of the secondary focusing at the 18‐ID Bio‐CAT beamline (at the APS). The result of secondary focusing carried out at 18‐ID using a single‐bounce capillary can also be explained using this phase‐space analysis. A discussion of the secondary focusing results is presented at the end of this paper.  相似文献   

4.
This workshop was held to gather scientists interested in exploiting beamlines I06 and I10 of the Surface and Interfaces Village at Diamond Light Source from June 10–11, 2009. Sarnjeet Dhesi introduced the meeting with a short explanation of the village structure at Diamond. This village includes the Nanoscience beamline (I06), catering for soft X-rays for Photo-Emission Electron Microscopy (PEEM) and X-ray Magnetic Circular and Linear Dichroism (XMCD and XMLD), and the Beam Line for Advanced Dichroism Experiments (BLADE, beamline I10), which is a polarized soft X-ray beam for XMCD, XMLD, and soft X-ray diffraction. I06 has been operational for over two years, while I10 is scheduled to come on-line in late 2010. In addition, there are two surface science beamlines (I07 and I09) in the village dedicated to surface diffraction and X-ray standing waves.  相似文献   

5.
The IMCA‐CAT bending‐magnet beamline was upgraded with a collimating mirror in order to achieve the energy resolution required to conduct high‐quality multi‐ and single‐wavelength anomalous diffraction (MAD/SAD) experiments without sacrificing beamline flux throughput. Following the upgrade, the bending‐magnet beamline achieves a flux of 8 × 1011 photons s?1 at 1 Å wavelength, at a beamline aperture of 1.5 mrad (horizontal) × 86 µrad (vertical), with energy resolution (limited mostly by the intrinsic resolution of the monochromator optics) δE/E = 1.5 × 10?4 (at 10 kV). The beamline operates in a dynamic range of 7.5–17.5 keV and delivers to the sample focused beam of size (FWHM) 240 µm (horizontally) × 160 µm (vertically). The performance of the 17‐BM beamline optics and its deviation from ideally shaped optics is evaluated in the context of the requirements imposed by the needs of protein crystallography experiments. An assessment of flux losses is given in relation to the (geometric) properties of major beamline components.  相似文献   

6.
7.
8.
Fast switching of X‐ray polarization with a lock‐in amplifier is a good method for acquiring weak signals from background noise for X‐ray magnetic circular dichroism (XMCD) experiments. The usual way to obtain a beam with fast polarization switching is to use two series of elliptically polarized undulators (tandem twin EPUs). The two EPUs generate two individual beams. Each beam has a different polarization and is fast switched into the beamline. It is very important to ensure that the energy resolution, the flux and the spot size at the sample of the two beams are equal in XMCD experiments. However, it is difficult in beamline design because the distances from the two EPUs to the beamline optics are different and the beamline is not switchable. In this work, a beamline design without an entrance slit for fast polarization switching EPUs is discussed. The energy resolution of the two beams can be tuned to be equal by minor rotation of the optics in the monochromator. The flux of the two beams can be balanced through separation blades X, Y in the exit slit, and by adjusting the position of the X blades along the beam. The spot size of the two beams can be adjusted to be equal by shifting the sample as well.  相似文献   

9.
X‐ray microbeams have become increasingly valuable in protein crystallography. A number of synchrotron beamlines worldwide have adapted to handling smaller and more challenging samples by providing a combination of high‐precision sample‐positioning hardware, special visible‐light optics for sample visualization, and small‐diameter X‐ray beams with low background scatter. Most commonly, X‐ray microbeams with diameters ranging from 50 µm to 1 µm are produced by Kirkpatrick and Baez mirrors in combination with defining apertures and scatter guards. A simple alternative based on single‐bounce glass monocapillary X‐ray optics is presented. The basic capillary design considerations are discussed and a practical and robust implementation that capitalizes on existing beamline hardware is presented. A design for mounting the capillary is presented which eliminates parasitic scattering and reduces deformations of the optic to a degree suitable for use on next‐generation X‐ray sources. Comparison of diffraction data statistics for microcrystals using microbeam and conventional aperture‐collimated beam shows that capillary‐focused beam can deliver significant improvement. Statistics also confirm that the annular beam profile produced by the capillary optic does not impact data quality in an observable way. Examples are given of new structures recently solved using this technology. Single‐bounce monocapillary optics can offer an attractive alternative for retrofitting existing beamlines for microcrystallography.  相似文献   

10.
In recent years, there has been growing interest in the design of electron accelerators in order to reduce beam emittance and to increase photon brilliance (from third-generation synchrotron sources to free electron lasers). This has increased the coherent properties of the beam and has opened up new branches of microscopy and spectroscopy at nanometer-length scales. The X-ray nano probe is going to be an important tool for future research, hence there has been substantial research carried out in order to develop nano focusing optics of diffraction-limited performance.  相似文献   

11.
ALBA is the Spanish synchrotron facility located in the area of Barcelona. It is a low-emittance, 3 GeV machine having, at present, seven state-of-the-art operating beamlines covering soft and hard X-rays. The hard X-ray beamlines comprise macromolecular crystallography, non-crystalline diffraction (SAXS and WAXS), high-resolution powder diffraction, and absorption spectroscopy. The soft X-ray beamlines include a photoemission beamline with two endstations—one devoted to photoelectron microscopy (PEEM) and the second to near ambient pressure photoemission (NAPP)—and another beamline devoted to XMCD and soft X-ray scattering. Both beamlines allow full control of the polarization of the beam, since they are equipped with helical undulators. An additional soft X-ray beamline, installed on a bending magnet port, is equipped with a full-field transmission X-ray microscope. Additional information may be found at http://www.albasynchrotron.es/en/beamlines.  相似文献   

12.
X-ray lenses are fabricated in polymethyl methacrylate using deep X-ray lithography beamline of Indus-2. The focussing performance of these lenses is evaluated using Indus-2 and Diamond Light Source Ltd. The process steps for the fabrication of X-ray lenses and microfocussing at 10 keV at moderate and low emittance sources are compared.  相似文献   

13.
Third‐generation storage rings are massively evolving due to the very compact nature of the multi‐bend achromat (MBA) lattice which allows amazing decreases of the horizontal electron beam emittance, but leaves very little place for infrared (IR) extraction mirrors to be placed, thus prohibiting traditional IR beamlines. In order to circumvent this apparent restriction, an optimized optical layout directly integrated inside a SOLEIL synchrotron dipole chamber that delivers intense and almost aberration‐free beams in the near‐ to mid‐IR domain (1–30 µm) is proposed and analyzed, and which can be integrated into space‐restricted MBA rings. Since the optics and chamber are interdependent, the feasibility of this approach depends on a large part on the technical ability to assemble mechanically the optics inside the dipole chamber and control their resulting stability and thermo‐mechanical deformation. Acquiring this expertise should allow dipole chambers to provide almost aberration‐free IR synchrotron sources on current and `ultimate' MBA storage rings.  相似文献   

14.
神龙二号是一台三脉冲强流脉冲电子束直线感应加速器,就其多脉冲的电子束束参数的测量而言,基本要求是单个脉冲可分辨,进一步的要求是脉冲内时间可分辨。基于光学渡越辐射原理及瞬态发射度测量系统原理,发展了一种束斑与发散角可以分开测量的光学布局结构,结合多台高速分幅相机,成功研制了一套完整的多脉冲电子束束参数的测量系统,其特点是灵活的组合测量方式,全面满足了神龙二号复杂艰难的调试及参数测量工作要求。测量系统最高时间分辨测量能力达到约2 ns的水平,单个脉冲可以获得至少8个时间分辨的束参数测量结果。  相似文献   

15.
高能同步辐射光源的增强器将直线加速器注入的束流加速到储存环所需的能量,为储存环提供高品质的电子束。为了对增强器的束流横向截面尺寸、发射度及能散进行测量,设计了两条可见光-紫外波段的束测光束线。两条光束线分别选取无色散和色散较大的两处弯铁位置作为光源点,使用两套同步光成像系统来监测光源点的束流截面尺寸,并计算束流发射度及能散。介绍了同步光引出真空室及光学成像系统,对影响成像质量的空间分辨率进行了分析,并针对升能过程中不同能量下束流光斑变化的测量进行了设计。  相似文献   

16.
The unprecedented brilliance achieved by third‐generation synchrotron sources and the availability of improved optics have opened up new opportunities for the study of materials at the micrometre and nanometre scale. Focusing the synchrotron radiation to smaller and smaller beams is having a huge impact on a wide research area at synchrotrons. The key to the exploitation of the improved sources is the development of novel optics that deliver narrow beams without loss of brilliance and coherence. Several types of synchrotron focusing optics are successfully fabricated using advanced miniaturization techniques. Kinoform refractive lenses are being developed for hard X‐ray beamlines, and the first test results at Diamond are discussed in this paper.  相似文献   

17.
18.
The NSLS-II storage ring completed commissioning in 2014 and all project-beamline IDs have also been commissioned. As of February 2015, six beamlines are about to finish commissioning. By the end of 2015, the ring is expected to store 300 mA with top-up injection capability and 500 mA with a second superconducting RF cavity installed in the following year. The design principle of the NSLS-II ring is to employ low-field BMs and simultaneously install high-field wigglers in non-dispersive straights to reduce the horizontal emittance. The more wigglers are installed, the smaller the horizontal electron beam emittance becomes. At this stage, six 3.4-m-long wigglers with 1.8 T effective field and 100 mm period length have been installed in three straight sections, which could reduce emittance in a bare lattice from 2.1 nm.rad to approximately 1.0 nm. rad. Two 2.0-m-long EPU49s are installed for the coherent soft X-ray (CSX) beamline in a short straight (SS) section also known as the low-βx straight section. These are Apple-II-type devices with four movable arrays. Two 3.0-m-long IVU20s are installed in two SS's, one for the Hard X-ray Nano-Probe (HXN) beamline and the other for the Coherent Hard X-ray (CHX) beamline. One 1.5-m-long IVU21 is installed in a canted short straight section for the Sub-Micron Resolution X-ray Spectroscopy (SRX) beamline. Its canting angle is 2 mrad outboard in the center of the straight section. The first ID for this beamline is installed in the downstream portion of the straight section. Another 3.0-m-long IVU22 is installed in a long straight section (LS: high-βx) where a second device is planned to be added in the future. Three 2.8-m-long IVU23s are planned to be installed in long straight sections, either in an asymmetric canted configuration or in a straight configuration. One 1.4 m EPU57 and one 2.8 m EPU105 are planned for the Electron Spectro-Microscopy (ESM) beamline in a SS, while one 3.5m EPU57 in a LS is planned for the Soft Inelastic X-ray Scattering (SIX) beamline. Table 1 shows the specifications of all the IDs funded so far.  相似文献   

19.
This paper describes fabrication methods used to demonstrate the advantages of nested or Montel optics for micro/nanofocusing of synchrotron X-ray beams. A standard Kirkpatrick-Baez (KB) mirror system uses two separated elliptical mirrors at glancing angles to the X-ray beam and sequentially arranged at 90° to each other to focus X-rays successively in the vertical and horizontal directions. A nested KB mirror system has the two mirrors positioned perpendicular and side-by-side to each other. Compared to a standard KB mirror system, Montel optics can focus a larger divergence and the mirrors can have a shorter focal length. As a result, nested mirrors can be fabricated with improved demagnification factor and ultimately smaller focal spot, than with a standard KB arrangement. The nested system is also more compact with an increased working distance, and is more stable, with reduced complexity of mirror stages. However, although Montel optics is commercially available for laboratory X-ray sources, due to technical difficulties they have not been used to microfocus synchrotron radiation X-rays, where ultra-precise mirror surfaces are essential. The main challenge in adapting nested optics for synchrotron microfocusing is to fabricate mirrors with a precise elliptical surface profile at the very edge where the two mirrors meet and where X-rays scatter. For example, in our application to achieve a sub-micron focus with high efficiency, a surface figure root-mean-square (rms) error on the order of 1 nm is required in the useable area along the X-ray footprint with a ∼0.1 mm-diameter cross section. In this paper we describe promising ways to fabricate precise nested KB mirrors using our profile coating technique and inexpensive flat Si substrates.  相似文献   

20.
There is growing excitement in the synchrotron materials science community about the potential of nearly diffraction-limited, high-repetition rate, hard X-ray sources, such as an Energy Recovery Linac (ERL) or an Ultimate Storage Ring (USR), and that these sources will pave the way to scientific insights and discoveries not possible with existing facilities. These future sources will deliver highly coherent, nearly diffraction-limited X-ray beams that will power ultra-intense, nanometer-scale X-ray probes and imaging capabilities approaching atomic resolution. They will produce X-ray pulses at MHz to GHz repetition rates and span pulse durations from below 50 femtoseconds to tens of picoseconds, enabling new classes of experiments in hard X-ray science.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号