首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The generation of a flat supercontinuum of over 80nm in the 1550nm region by injecting 1.6ps 10 GHz repetition rate optical pulses into an 80-m-long dispersion-flattened microstructure fibre is demonstrated. The fibre has small normal dispersion with a variation smaller than 1.5 (ps·nm^-1·km^-1) between 1500 and 1650nm. The generated supercontinuum ranging from 1513 to 1591 nm has the flatness of ±1.5 dB and it is not so flat in the range of several nanometres around the pump wavelength 1552nm. Numerical simulation is also used to study the effect of optical loss, fibre parameters and pumping conditions on supercontinuum generation in the dispersion-flattened microstructure fibre, and can be used for further optimization to generate flat broad spectra.  相似文献   

2.
光子晶体光纤中超连续谱产生的理论与实验研究   总被引:5,自引:3,他引:2  
研究了光子晶体光纤中超连续激光光源的产生机理.利用非线性偏振旋转技术产生的中心波长为1 556.0 nm的飞秒光脉冲作为泵浦光源,在69 m长的高非线性光子晶体光纤中,得到了20 dB带宽约为140 nm的超连续谱;采用实验和数值模拟方法,研究了不同泵浦功率下超连续谱形成的过程.结果表明,在不同的泵浦功率下,超连续谱的形成机理不同,在各种非线性效应的共同作用下,泵浦光脉冲的峰值功率越高,得到超连续谱的带宽越宽,实验与数值模拟结果一致.另外,要想获得平坦的宽带超连续谱,必须选择合适的光纤长度.  相似文献   

3.
Numerical simulations are used to study how fiber supercontinuum generation seeded by picosecond pulses can be actively controlled through the use of input pulse modulation. By carrying out multiple simulations in the presence of noise, we show how tailored supercontinuum spectra with increased bandwidth and improved stability can be generated using an input envelope modulation of appropriate frequency and depth. The results are discussed in terms of the nonlinear propagation dynamics and pump depletion.  相似文献   

4.
5.
Amplification of supercontinuum light via four-wave optical parametric amplification in a gas-filled hollow fiber is investigated. By pumping with a femtosecond pulse in the near-infrared, amplification was observed in the wavelength range 500–700 nm, with an amplification gain up to 100. The amplification bandwidth obtained here supports sub-10-fs pulse durations. The wavelength and gas-pressure dependence of the amplification gain in this regime significantly differ from those predicted from only the linear phase mismatch. The nonlinear phase mismatch, arising from nonlinear phase modulations induced by a pump pulse, dominates the features observed for the amplification, i.e., a low phase-matching pressure and an amplification gain depending on wavelength. To investigate the effect of phase modulations on the parametric amplification, numerical analysis and simulations are used to reproduce the measured wavelength dependence of the amplification gain.  相似文献   

6.
Dudley JM  Coen S 《Optics letters》2002,27(13):1180-1182
Numerical simulations have been used in studies of the temporal and spectral features of supercontinuum generation in photonic crystal and tapered optical fibers. In particular, an ensemble average over multiple simulations performed with random quantum noise on the input pulse allows the coherence of the supercontinuum to be quantified in terms of the dependence of the degree of first-order coherence on the wavelength. The coherence is shown to depend strongly on the input pulse's duration and wavelength, and optimal conditions for the generation of coherent supercontinua are discussed.  相似文献   

7.
多孔微结构光纤中飞秒激光脉冲超连续谱的产生   总被引:21,自引:1,他引:21       下载免费PDF全文
报道了利用800nm飞秒激光脉冲在多孔微结构光纤中产生超连续谱展宽的现象,连续谱展宽范围为440—890nm.基于标量波近似理论对微结构光纤包层的有效折射率和基模的有效面积以及光纤的色散特性进行了计算,发现微结构光纤具有特殊的控制色散和波导特性的能力,对超连续谱展宽的机理进行了初步解释.本文的理论分析和实验结果有较好的一致性,认为即使包层由无序填充气线组成的多孔微结构光纤也可以出现超连续谱展宽效应. 关键词: 多孔微结构光纤 超连续谱 有效折射率 色散  相似文献   

8.
We report supercontinuum generation extending to 300 nm in the UV from a pure-silica holey fiber. The broad spectrum was obtained by launching ultra-short pulses (150 fs, 10 nJ at 820 nm) from an amplified Ti:sapphire laser. The extension of holey-fiber-based supercontinuum generation into the UV should prove to be of immediate application in spectroscopy. By slightly detuning the launch conditions we excited a higher order spatial mode, which produced a narrower supercontinuum, but with enhanced conversion efficiency at a series of blue/UV peaks around 360 nm. We present numerical simulations, which suggest that differences in the dispersion profiles between the modes are an important factor in explaining this enhancement. In a related experiment, using the same laser source and fiber, we demonstrate a visible supercontinuum from several subsidiary cores, with distinct colours in each core. The subsidiary cores were excited by an appropriate input coupling. Fabrication of a fiber with a range of core sizes (dispersion profiles) for tailored supercontinuum generation can therefore be envisaged for practical applications. PACS 42.72.Bj; 42.79.Nv; 42.81.Dp  相似文献   

9.
Microjoule supercontinuum generation is demonstrated using a large-mode-area photonic-crystal fiber (PCF) pumped by an amplified stretched-pulse output of a mode-locked Cr:forsterite laser. A PCF with a mode area of 380 μm2 is employed to transform 300-fs Cr:forsterite laser pulses with a peak-power of a few megawatts into a supercontinuum radiation with a spectrum spanning from 700 to 1800 nm and a total energy of 1.15 μJ.  相似文献   

10.
We demonstrate supercontinuum generation spanning 1.6 octaves in silicon nitride waveguides. Using a 4.3 cm-long waveguide, with an effective nonlinearity of γ=1.2 W(-1) m(-1), we generate a spectrum extending from 665 nm to 2025 nm (at -30 dB) with 160 pJ pulses. Our results offer potential for a robust, integrated, and low-cost supercontinuum source for applications including frequency metrology, optical coherence tomography, confocal microscopy, and optical communications.  相似文献   

11.
We describe the effect of temperature variations on supercontinuum (SC) generation in optical fibers using a continuous-wave (CW) Raman fiber laser as a pump. We achieve supercontinuum generation by pumping only ∼2 W of power into a 7 km-long nonzero dispersion-shifted fiber (NZDSF) in the region of small anomalous dispersion. In these conditions, the supercontinuum builds up basically on modulational instability and Raman. At room temperature, the supercontinuum covers effectively the S, C and L transmission bands defined by the International Telecommunication Union (ITU). Temperature tuning of the fiber environment provides a means of tuning the fiber dispersion, and thus a means of changing the width and shape of the supercontinuum spectrum. We demonstrate a 27% increase in the 10-dB SC width. We believe that the application of this new tuning mechanism to other experimental configurations using pulsed sources might be used to produce extremely broad supercontinuums.  相似文献   

12.
Liu H  Dai Y  Xu C  Wu J  Xu K  Li Y  Hong X  Lin J 《Optics letters》2010,35(23):4042-4044
The trapping of Cherenkov radiation by Raman solitons is an important process during supercontinuum generation and has been demonstrated as an effective way to extend the Cherenkov-radiation-based wavelength conversion toward the visible band. In this Letter we demonstrate that the existence of the self-steepening effect increases the energy of the Cherenkov radiation during the trap while reducing its frequency blueshift. The frequency and energy evolutions of Cherenkov radiation are analytically studied, and the predictions are consistent with the simulations based on the generalized nonlinear Schr?dinger equation.  相似文献   

13.
色散位移光纤反常色散区平坦超宽超连续谱的产生   总被引:1,自引:0,他引:1  
采用一种在色散位移光纤反常色散区产生平坦超宽超连续谱的方法。利用数值计算对色散位移光纤反常色散区高阶孤子压缩效应产生超连续谱展开了全面、深入的研究。结果表明,在色散位移光纤的反常色散区色散斜率(三阶色散)对超连续谱的形成起着决定性的作用;进一步研究表明,抽运脉冲的峰值功率及脉宽对超连续谱的谱宽和平坦度都有着重要影响,而高阶非线性效应对超连续谱产生没有显著影响。综合考虑以上因素,超续谱的谱宽和平坦度可以获得最大的优化。  相似文献   

14.
The initial results of the experimental and numerical study of a fiber supercontinuum generator based on a wavelength-tunable femtosecond Yb:KYW laser are presented. It is demonstrated that a variation in the pumping wavelength in the vicinity of the zero-dispersion wavelength of a microstructured fiber at about 1040 nm allows for a wide-range variation in the supercontinuum spectral width at a constant mean pumping power. The experimentally measured strong dependence of the supercontinuum spectral width (from 70 to 390 nm) on the pumping wavelength (1040–1049 nm) at a pulse energy of about 1 nJ and a pulse duration of 250 fs is qualitatively reproduced in the simulation.  相似文献   

15.
光子晶体光纤作为光学非线性良好介质,对超连续谱产生具有重要作用。深紫外超连续谱光源在许多应用中有急切的需求,然而由于实验条件和光纤参数等方面的影响,利用高非线性光子晶体光纤产生深紫外(<280 nm)超连续谱的报道较少。通过理论和实验研究了高非线性光子晶体光纤在深紫外区的频率变换,并分析其产生的物理机理。使用钛宝石飞秒激光器将实验室自制的光子晶体光纤在反常色散区泵浦,研究了不同泵浦功率和泵浦波长对深紫外区超连续谱的影响,结果表明:泵浦波长固定为860 nm时,深紫外频率光谱展宽范围随泵浦功率的增加而逐渐展宽;泵浦功率固定为0.4 W时,泵浦波长的增加不仅展宽超连续谱范围而且极大的提高了深紫外区光谱的转换效率。当泵浦波长为870 nm,泵浦功率为0.4 W,实验所用光子晶体光纤长度为1.45 m,零色散波长为825 nm时,光子与色散波的交叉相位调制使深紫外基模超连续谱扩展到最短波长212 nm。  相似文献   

16.
利用非线性偏振旋转锁模掺铒光纤激光器和1100m长的掺锗硅基高非线性光纤制作了超连续光源,获得了从1150~1750nm的超宽带输出光谱,其中1150~1350nm波段光谱起伏小于3dB,1600~1700nm波段平坦度优于1dB,并有很好的向长波延展空间。光谱展宽的机理为孤子分裂与受激拉曼散射,而四波混频使光谱进一步展宽。  相似文献   

17.
The mode structure and spectral properties of supercontinuum emission generated by femtosecond pulses of Ti: sapphire laser radiation in microstructure fibers are studied. The long-wavelength (720–900 nm) and visible (400–600 nm) parts of supercontinuum emission are shown to be spatially separated in microstructure-fiber modes, which can be isolated with an appropriate spectral filtering. The spatial modes thus isolated in spectrally sliced supercontinuum emission possess a spatial quality sufficient for further efficient frequency conversion. The possibility of achieving a high spectral quality of supercontinuum emission is also demonstrated. We explore the ways to control the spectrum of supercontinuum emission by matching parameters of the pump pulse with the parameters of a microstructure fiber and by tuning the initial chirp of the pump pulse. The results of our studies show that supercontinua produced in microstructure fibers offer new approaches to designing a new generation of optical parametric amplifiers and broadband radiation sources for spectroscopic, metrological, and biomedical applications.  相似文献   

18.
We present here an enhanced broadband supercontinuum generation in a potassium di-hydrogen phosphate (KDP) crystal. The enhancement in the bandwidth of the white light is obtained towards the shorter wavelength regime (<400 nm) by employing supercontinuum generation and sum frequency generation in tandem. The tunability in the blue region of the spectrum with angle is demonstrated. The bandwidth of supercontinuum achieved spans from 350 nm to 1300 nm. Further, we show the excellent polarization maintenance of continuum generated in KDP in comparison to that generated in water and BK-7 glass. PACS 42.65.Ky; 42.65.Jx; 42.65.Re; 42.25.Ja  相似文献   

19.
Yin L  Lin Q  Agrawal GP 《Optics letters》2007,32(4):391-393
We show through numerical simulations that silicon waveguides can be used to create a supercontinuum extending over 400 nm by launching femtosecond pulses as higher-order solitons. The physical process behind continuum generation is related to soliton fission, self-phase modulation, and generation of Cherenkov radiation. In contrast with optical fibers, stimulated Raman scattering plays little role. As low-energy (approximately 1 pJ) pulses and short waveguides (<1 cm) are sufficient for continuum generation, the proposed scheme should prove useful for practical applications.  相似文献   

20.
Cruz FC  Stowe MC  Ye J 《Optics letters》2006,31(9):1337-1339
A tapered semiconductor amplifier is injection seeded by a femtosecond optical frequency comb at 780 nm from a mode-locked Ti:sapphire laser. Energy gains of more than 17 dB(12 dB) are obtained for 1 mW(20 mW) of average input power when the input pulses are stretched into the picosecond range. A spectral window of supercontinuum light generated in a photonic fiber has also been amplified. Interferometric measurements show sub-Hertz linewidths for a heterodyne beat between the input and amplified comb components, yielding no detectable phase-noise degradation under amplification. These amplifiers can be used to boost the infrared power in f-to-2f interferometers used to determine the carrier-to-envelope offset frequency, with clear advantages for stabilization of octave-spanning femtosecond lasers and other supercontinuum light sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号