首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
给出了Nd∶YVO4/KTP内腔倍频声光调Q工作原理的耦合波速率方程组实现了半导体激光器(LD)抽运折叠腔倍频声光调Q绿激光的运转,在抽运光功率3.8W、重复频率10kHz时,获得绿光脉冲宽度为33.2ns,单脉冲能量为59.6μJ,峰值功率达到1.8kW数值求解耦合波方程组理论值与实验结果相符  相似文献   

2.
报道了LD抽运的自喇曼c切Nd∶YVO4调Q腔内倍频黄光激光器.Nd∶YVO4晶体同时作为激光介质和喇曼晶体,通过声光调Q技术,产生了1178.7nm的喇曼激光,经过KTP腔内倍频,输出589.4nm黄光.测量了平均输出功率随抽运功率和脉冲重复率的变化.典型的1066.7nm基频光、1178.7nm喇曼光和589.4nm倍频光的脉冲宽度分别为24.9ns、11.2ns和6.8ns.在脉冲重复率为15kHz,抽运功率为7.56W时,产生了平均功率为151mW的589.4nm光的输出.  相似文献   

3.
刘波  张行愚  王青圃  李述涛  苏富芳  贾鹏 《光子学报》2007,36(10):1777-1780
报道了LD抽运的自喇曼c切Nd∶YVO4调Q腔内倍频黄光激光器.Nd∶YVO4晶体同时作为激光介质和喇曼晶体,通过声光调Q技术,产生了1 178.7 nm的喇曼激光,经过KTP腔内倍频,输出589.4 nm黄光.测量了平均输出功率随抽运功率和脉冲重复率的变化.典型的1 066.7 nm基频光、1 178.7 nm喇曼光和589.4 nm倍频光的脉冲宽度分别为24.9 ns、11.2 ns和6.8 ns.在脉冲重复率为15 kHz,抽运功率为7.56W时,产生了平均功率为151 mW的589.4 nm光的输出.  相似文献   

4.
采用激光二极管(LD)抽运c轴切割的Nd:GdVO_4晶体,声光调制器作为主动调Q开关,Cr~(4+):YAG饱和吸收体作为被动调Q开关,实现了声光Cr~(4+):YAG主被动双调Q 1.06μm激光运转。实验结果表明,通过改变声光调制器和Cr~(4+):YAG饱和吸收体在谐振腔内的位置,可以有效地控制脉冲宽度,同时获得了双调Q激光的单脉冲能量、峰值功率的变化范围。根据ABCD矩阵传输理论计算得出的腔内模式半径沿腔轴的变化关系,考虑腔内振荡光强的空间高斯分布以及声光调制的渡越时间,给出了LD抽运声光Cr~(4+):YAG主被动双调Q激光的耦合速率方程组,理论计算与实验结果相符。  相似文献   

5.
赵圣之  孙连科 《光子学报》1996,25(12):1081-1085
采用氙灯泵浦新型晶体Nd:Sr5(PO4)3F,以KTP晶体腔内倍频,实现了该晶体0.5295μm绿光激光BDN染料片调Q运转。测量了输出绿光激光的特性及不同腔长和染料片小信号透过率情况下的输出能量及脉冲宽度,给出了染料片调Q腔内倍频的耦合波方程组,数值求解该方程组,所得的理论数据与实验结果较好地相符。  相似文献   

6.
LD泵浦Nd:GdVO4晶体Cr4+:YAG被动调Q激光特性研究   总被引:7,自引:5,他引:2  
考虑腔内光子数密度的空间高斯分布以及晶体热效应的影响,给出了LD泵浦Nd:GdVO4 晶体Cr4+:YAG被动调Q 1.06 μm激光的耦合速率方程组.数值求解该方程组获得了输出激光的脉冲宽度、重复率、峰值功率以及单脉冲能量随泵浦功率的变化特性,其理论值与实验结果相符.  相似文献   

7.
采用氙灯抽运自倍频晶体Nd3 +∶Ca4GdO(BO3 ) 3 (简称Nd∶GdCOB) ,Cr4+∶YAG被动调Q ,实现了Nd∶GdCOB晶体被动调Q激光运转 ,测量了饱和吸收体Cr4+∶YAG不同小信号透过率下绿激光单脉冲的输出能量、脉冲宽度、重复率 ,给出了描述Nd∶GdCOB晶体调Q工作原理的耦合波方程组 ,数值求解了该方程组 ,所得的理论结果与实验值相符合  相似文献   

8.
采用氙灯抽运自倍频晶体Nd^3 :Ga4GdO(BO3)3(简称Nd:GdCOB),Cr^4 :YAG被动调Q,实现了Nd:GdCOB晶体被动调Q激光运转,测量了饱和吸收体Cr^4 :YAG不同小信号透过率小绿激光单脉冲的输出能量、脉冲宽度、重复率,给出了描述Nd:GdCOB晶体调Q工作原理的耦合波方程组,数值求解了该方程组,所得的理论结果与实验值相符合。  相似文献   

9.
LD泵浦Nd∶YVO4晶体GaAs被动调Q激光理论和实验研究   总被引:7,自引:7,他引:0  
考虑LD泵浦光强和腔内振荡光强的空间高斯分布以及晶体热效应的影响,给出了Nd∶YVO4晶体GaAs被动调Q1.06 μm激光的耦合速率方程组,数值求解该方程组获得了输出激光的平均输出功率、脉冲宽度、重复率随泵浦功率的变化特性,所得理论值与实验结果相符.  相似文献   

10.
通过优化双棒串接直腔结构设计,利用大功率LD侧面抽运、声光Q开关、Ⅱ类相位匹配S-KTP内腔倍频获得高效大功率绿色激光输出.当抽运电流为45 A、重复频率为15 kHz时,激光平均功率为132 W,光—光转换效率为132%,脉宽约为120 ns.在输出130 W时,测得1 h功率不稳定度小于05%,光束质量因子M2为67.对高功率抽运情况下激光介质的热透镜效应以及谐振腔稳定运转工作区域也进行了理论分析和实验研究. 关键词: 绿光激光器 腔内倍频 声光调Q LD侧面抽运  相似文献   

11.
By simultaneously using both active and passive Q-switches in the same cavity, a diode-pumped doubly Q-switched intracavity-frequency-doubled c-cut Nd:GdVO4/KTP green laser with acoustic-optic (AO) modulator and GaAs semiconductor saturable absorber is realized. A comparison between c-cut and a-cut Nd:GdVO4 crystals shows that the doubly Q-switched c-cut Nd:GdVO4/KTP green laser can generate narrower pulse and higher peak power when the incident pump power is higher than 4.4 W. In addition, the doubly Q-switched c-cut Nd:GdVO4/KTP green laser can generate more symmetric and shorter pulse in comparison with singly AO- or GaAs-Q-switched laser. The coupled rate equations are used to simulate the process of these lasers.  相似文献   

12.
By considering the Gaussian transversal and longitudinal distributions of the intracavity photon density as well as the walk-off effect of KTP crystal, the coupled rate equations of the doubly Q-switched intracavity-frequency-doubling Nd:LuVO4/KTP green laser with acoustic-optic (AO) modulator and GaAs saturable absorber are given. These equations are solved numerically and the doubly Q-switched green laser characteristics, such as the pulse width and the pulse symmetry, have been obtained. In the experiment, a diode-pumped doubly Q-switched intracavity-frequency-doubling Nd:LuVO4/KTP green laser with AO and GaAs is presented. This doubly Q-switched green laser can generate the almost absolutely symmetric pulse profile with the shorter pulse width and the higher power than the singly Q-switched green laser. The experimental results are in agreement with the theoretically numerical calculations.  相似文献   

13.
By using both acousto-optic (AO) modulator and GaAs saturable absorber, a diode-pumped doubly Q-switched and mode-locked (QML) YVO4/Nd:YVO4 laser is presented. The average output power and the pulse width of the Q-switched envelope have been measured. The Q-switch pulse energy of the doubly QML laser are higher than that only with GaAs. The stability of the QML laser with the dual-loss-modulation is significantly improved if compared to that only with GaAs.The experimental results show that the doubly QML YVO4/Nd:YVO4 laser has nearly 80% modulation depth and deeper than that of the singly passively QML pulse. The doubly Q-switched mode-locked pulse inside the Q-switched envelope has a repetition rate of 111 MHz and its pulse width is estimated to be about 700 ps. By using a hyperbolic secant square function and considering the Gaussian distribution of the intracavity photon density, the coupled equations for diode-pumped dual-loss-modulated QML laser is given and the numerical solutions of the equations are in good agreement with the experimental results.  相似文献   

14.
A laser diode directly end-pumped, passively Q-switched Nd:YVO4/Cr:YAG laser is presented in this paper. With 600 mW incident pump laser, Q-switched 1064 nm laser with an average power of 138 mW, pulse width of 19.8 ns, repetition rate of 170.1 kHz and peak power of 40.96 W is obtained. When a KTP crystal was inserted into the cavity, Q-switched 532 nm laser with an average power of 56 mW, pulse width of 28.4 ns, repetition rate of 118.2 kHz and peak power of 16.7 W is obtained at last.  相似文献   

15.
By considering the Gaussian spatial distribution of the intracavity photon density and initial population-inversion density as well as the longitudinal distribution of the photon density along the cavity axis and turnoff time of the acoustic–optic Q-switch, the coupled equations of an LD-pumped actively Q-switched Nd:YVO4 laser with acoustic–optic modulator are given. These coupled rate equations are solved numerically on a computer, and the dependences of pulse width, single-pulse energy and peak power on incident pump power are obtained. In the experiment, a laser-diode-pumped actively Q-switched Nd:YVO4 laser with acoustic–optic modulator is realized, and the experimental results are in fair agreement with the numerical solutions.  相似文献   

16.
Using electro-optic (EO) modulator and GaAs saturable absorber, a diode-pumped doubly Q-switched and mode-locked (QML) YVO4/Nd:YVO4 laser at 1.06 μm is realized. The experimental results show that the number of the mode-locking pulses underneath the Q-switched envelope decreased with increasing pump power. With an output coupling of 6.5 %, the single mode-locking pulse underneath the Q-switched envelope with 1 kHz repetition rate was obtained when the pump power exceeded 4.65 W. At a pump power of 8.25 W for an output coupling of 10 %, a stable mode-locking pulse train at a repetition rate of 1 kHz was achieved with pulse energy as high as 582 μJ and pulse duration of about 580 ps, corresponding to a peak power of 1 MW. Using a hyperbolic secant square function and considering the Gaussian distribution of the intracavity photon density, the coupled rate equations for diode-pumped doubly QML YVO4/Nd:YVO4 laser are given and the numerical solutions of the equations are basically in accordance with the experimental results.  相似文献   

17.
A LD-pumped single-frequency passively Q-switched Nd: YVO4/KTP/Cr:YAG green laser is presented. Cr:YAG plays the double role of a passive Q-switch and a Brewster plate. With 900 mW incident pump laser, single-frequency passively Q-switched green laser with average power of 86 mW, pulse width of 14.7 ns, repetition rate of 140.8 kHz and peak power of 41.6 W is obtained. Measurement shows that the pulse amplitude and period between pulses are stable within ±1.5%.  相似文献   

18.
A diode-pumped doubly passively Q-switched intracavity-frequency-doubling Nd:LuVO4/KTP green laser with Cr4+:YAG and GaAs saturable absorbers is demonstrated. This laser can generate the shorter pulse width with higher peak power compared with the singly passively Q-switched green laser with Cr4+:YAG or GaAs saturable absorber. The relations between the pulse symmetry and the ratio of the small-signal transmissions of two saturable absorbers are investigated. By reasonably choosing the small-signal transmissions of both saturable absorbers, the doubly passively Q-switched green laser can generate the much more symmetric pulse profile. The coupled rate equations are used to simulate the passively Q-switched process of the green laser by considering the Gaussian transversal and longitudinal distributions of the intracavity photon density. The numerical results of the equations are consistent with the experimental results.  相似文献   

19.
Nd3+:NaY(WO4)2, known as Nd:NYW, is a new type crystal. By using laser-diode as pump source, a passive Q-switching of intracavity-frequency-doubling Nd:NYW/KTP laser has been realized with Cr4+:YAG saturable absorber. The dependence of pulse repetition rate, pulse energy, pulse width, and peak power on incident pump power for different small-signal transmissions of Cr4+:YAG are measured. The coupled rate equations are used to simulate the Q-switched process of laser, and the numerical solutions agree with the experimental results.  相似文献   

20.
A LD end-pumped acoustic-optic Q-switched intracavity frequency-doubled Nd:YVO4 laser was demonstrated. It uses a high gray-tracking resistance KTP crystal as nonlinear optical crystal. The output characteristics of 532 nm green laser using different doping concentrations and cavity configurations were investigated. With the pump power of 27.5 W, a maximum average power of 13 W at 532 nm was achieved at a pulse repetition rate of 80 kHz, corresponding to the optical-to-optical efficiency of 47.3%. The pulse width is 30 ns and single pulse energy is up to 162.5 μJ. This work is a significant exploration for using a high gray-tracking resistance KTP crystal to generate highly efficient frequency-doubled green laser.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号