首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ferrimagnetism has been extensively studied in garnets, whereas it is rare to find the antiferromagnet. Present work will demonstrate antiferromagnetism in the two Mn–V-garnets. Antiferromagnetic phase transition in AgCa2Mn2V3O12 and NaPb2Mn2V3O12 has been found, where the magnetic Mn2+ ions locate only on octahedral A site. The heat capacity shows sharp peak due to antiferromagnetic order with the Néel temperature TN=23.8 K for AgCa2Mn2V3O12 and TN=14.2 K for NaPb2Mn2V3O12. The magnetic entropy change over a temperature range 0–50 K is 13.9 J K?1 mol-Mn2+-ions?1 for AgCa2Mn2V3O12 and 13.6 J K?1 mol-Mn2+-ions?1 for NaPb2Mn2V3O12, which are in good agreement with calculated value of Mn2+ ion with spin S=5/2. The magnetic susceptibility shows the Curie–Weiss behavior over the range 29–350 K. The effective magnetic moment μeff and the Weiss constant θ are μeff=6.20 μB Mn2+-ion?1 and θ=?34.1 K (antiferromagnetic sign) for AgCa2Mn2V3O12 and μeff=6.02 μB Mn2+-ion?1 and θ=?20.8 K for NaPb2Mn2V3O12.  相似文献   

2.
The nuclear and magnetic structure and the magnetic properties of the polycrystalline double perovskite Sr2MnWO6 have been studied. Rietveld analysis of neutron powder diffraction (NPD) data at T=295 K shows that the sample is tetragonal (space group P42/n, a=8.0119(4) Å, c=8.0141(8) Å). Some additional magnetic diffraction peaks were found in the NPD pattern at 10 K, which can be accounted for by antiferromagnetic ordering of spins at the Mn sites. The magnetic unit cell is doubled in all three unit axes directions (a=b=15.9984(8) Å, c=16.012(2) Å) and the manganese moments are coupled antiferromagnetically along the unit cell axes. The total magnetic moment of Mn2+ is found to be 2.27(7) μB. The antiferromagnetic behaviour was confirmed from magnetisation measurements. The transition from a paramagnetic to an antiferromagnetic state takes place at 13.0±0.1 K.  相似文献   

3.
《Solid State Ionics》2006,177(26-32):2657-2660
The compounds Li(4−x)/3Mn2(1−x)/3CoxO2 (0 < x < 0.5) were prepared by the sol–gel technique. X-ray diffraction patterns of these compounds were identified as α-NaFeO2 type layered structure, though some super-structure lines, related to the ordered array of Li and transition metal ions in the transition metal layer, were observed. The magnetic susceptibility exhibited an antiferromagnetic transition around 40 K for x < 0.2, however the specimens with x > 0.3 had no magnetic transition. The magnetic percolation may explain these magnetic variations. The electrochemical performances were evaluated for the compound of x = 0.5, and it was seen that the electrochemical properties were sensitive to the potential window. Additionally, it was also found that the discharge capacity strongly depended on the preparation temperature; it took a maximum value at the preparation temperature of 900 °C. The discharge capacity is sensitive not only to the cation mixing degree but also to the particle size.  相似文献   

4.
The crystal structure and physical properties of BaFe2As2, BaCo2As2, and BaNi2As2 single crystals are surveyed. BaFe2As2 gives a magnetic and structural transition at TN = 132(1) K, BaCo2As2 is a paramagnetic metal, while BaNi2As2 has a structural phase transition at T0 = 131 K, followed by superconductivity below Tc = 0.69 K. The bulk superconductivity in Co-doped BaFe2As2 below Tc = 22 K is demonstrated by resistivity, magnetic susceptibility, and specific heat data. In contrast to the cuprates, the Fe-based system appears to tolerate considerable disorder in the transition metal layers. First principles calculations for BaFe1.84Co0.16As2 indicate the inter-band scattering due to Co is weak.  相似文献   

5.
Magnetic properties and magnetocaloric effects (MCEs) of the intermetallic Ho3Al2 compound are investigated by magnetization and heat capacity measurements. Two successive magnetic transitions, a spin-reorientation (SR) transition at TSR=31 K followed by a ferromagnetic (FM) to paramagnetic (PM) transition at TC=40 K, are observed. Both magnetic transitions contribute to the MCE and result in a large magnetic entropy change (ΔSM) in a wide temperature range. The maximum values of ?ΔSM and adiabatic temperature change (ΔTad) reach 18.7 J/kg K and 4.8 K for the field changes of 0–5 T, respectively. In particular, a giant value of refrigerant capacity (RC) is estimated to be 704 J/kg for a field change of 5 T, which is much higher than those of many potential refrigerant materials with similar transition temperatures.  相似文献   

6.
Inelastic neutron scattering has been performed on powder sample of an iron-based superconductor BaFe2(As0.65P0.35)2 with superconducting transition temperature (Tc) = 30 K, whose superconducting (SC) order parameter is expected to have line node. In the normal state, constant-E scan of dynamical structure factor, S(Q, E), exhibits a peak structure centered at momentum transfer Q  1.20 Å?1, corresponding to antiferromagnetic wave vector. Below Tc, the redistribution of the magnetic spectral weight takes place, resulting in the formation of a peak at E  12 meV and a gap below 6 meV. The enhanced magnetic peak structure is ascribed to the spin resonance mode, evidencing sign change in the SC order parameter similar to other iron-based high-Tc superconductors. It suggests that fully-gapped s± symmetry dominates in this superconductor, which gives rise to high-Tc (=30 K) despite the nodal symmetry.  相似文献   

7.
Accumulating evidence for a two-step magnetic ordering in the borocarbide DyNi2B2C is summarized, including earlier overlooked evidence for the initial magnetic transition and a recent magnetization study of polycrystalline samples. The two-step ordering involves initial two-dimensional ferromagnetic ordering in the DyC (basal) planes at TN (=16.3 K), gradual build-up of the three-dimensional (3D) alternate stacking of ferromagnetic planes, and a final 3D ordering in the AF–I-related structure at a lower temperature To (=10.4 K), depicting a first-order transition. Supporting evidence for the two-step magnetic ordering in DyNi2B2C comes from point-contact spectroscopy measurements in the normal state for DyNi2B2C–Ag contact, and from similar behaviour of PrNi2B2C and (Pr0.91Dy0.09)Ni2B2C. In the isostructural borocarbide DyCo2B2C the two magnetic transitions (at 7.8 and 2.6 K) deduced from the specific-heat measurements are also attributed to a two-step magnetic ordering.  相似文献   

8.
RbFe2As2 has recently been reported to be a bulk superconductor with Tc = 2.6 K in the undoped state, in contrast to undoped BaFe2As2 with a magnetic ground state. We present here the results of the first-principles calculations of the structural, elastic and electronic properties for this newest superconductor and discuss its behaviour in relation to other related systems.  相似文献   

9.
The magnetic properties of Lu2Fe17 single crystal have been studied by means of magnetization, susceptibility and magnetostriction measurements. The unusual magnetic behavior with two magnetic phase transitions has been observed in magnetic fields up to 50 Oe. The magnetostriction of the Lu2Fe17 compound has the maximum at temperature T≈285 K at which the paraprocess makes the main contribution to the magnetization.  相似文献   

10.
In this work the Nb2InC phase is investigated by X-ray diffraction, heat capacity, magnetic and resistivity measurements. Polycrystalline samples with Nb2InC nominal compositions were prepared by solid state reaction. X-ray powder patterns suggest that all peaks can be indexed with the hexagonal phase of Cr2AlC prototype. The electrical resistance as a function of temperature for Nb2InC shows superconducting behavior below 7.5 K. The M(H) data show typical type-II superconductivity with HC1  90 Oe at 1.8 K. The specific heat data are consistent with bulk superconductivity. The Sommerfeld constant is estimated as γ  12.6 mJ mol?1 K?1.  相似文献   

11.
《Physica B: Condensed Matter》2005,355(1-4):202-206
Specific heat (SH) measurements on TbMn2(H,D)2 powders have been performed in the temperature range from 2 to 350 K, in zero magnetic field and in 9 T. Due to the low heat conductivity of the samples, the measurements were carried out on a mixed Cu- and sample-powder pellet. For TbMn2, the anti-ferromagnetic phase transition was manifest by a single SH peak at TN=47 K, whereas a double SH peak at 281 and 288 K and an upturn below 5 K were observed for the hydride sample. Upon applying the magnetic field of 9 T, the SH upturn was suppressed, whereas no visible influence was found on the specific heat in the whole temperature range above 10 K as well as on the double peak.  相似文献   

12.
We report the effect of defects introduced by heavy-ion irradiation with 2.6 GeV uranium ions at several matching fields in single crystalline Ba(Fe0.925Co0.075)2As2. The suppression rate of Tc at lower matching fields is larger than that at higher matching fields. The critical current density calculated from magnetic hysteresis loop is enhanced up to 4.1 × 106 A/cm2 at 2 K. Clear dips in magnetic hysteresis loops near zero field are observed at high matching fields. Field dependence of normalized relaxation rate is suppressed, and the relationship between the dip and the relaxation rate is discussed.  相似文献   

13.
We report the superconducting properties of the pyrochlore oxide Cd2Re2O7. The bulk superconducting transition temperature Tc is about 1.0 K, and the upper critical field Hc2 determined by the measurement of specific heat under magnetic fields is 0.29 T. The superconducting coherence length is estimated to be 34 nm. Specific heat data measured on single crystals suggest that the superconducting gap of Cd2Re2O7 is nodeless.  相似文献   

14.
We present the results of magnetization, susceptibility and specific-heat measurements of the high-temperature (HT) and low-temperature (LT) phases of PrIr2Si2 performed on single-crystalline samples. The HT and LT phases adopt the tetragonal CaBe2Ge2-type and ThCr2Si2-type structure, respectively. We have found no magnetic phase transition for the HT phase at temperatures down to 2 K. On the other hand, the LT phase apparently orders antiferromagnetically (AF) at 45.5 K and undergoes a transition to another AF phase at Tt=23.7 K. Complexity of the magnetic phase diagram is amplified by two metamagnetic transitions induced by magnetic field applied along the c-axis at temperatures below Tt. The results will be discussed with respect to other polymorphic compounds PrNi2As2 and UCo2Ge2.  相似文献   

15.
A new ternary intermetallic compound, Nd2Cu0.8Ge3, was synthesized and its crystal structure was determined by Rietveld refinement of X-ray powder diffraction data. The Nd2Cu0.8Ge3 compound crystallizes in space group I41/amd (No. 141), with a tetragonal a-ThSi2 structure type, and a=0.41783(2) nm, c=1.43689(9) nm, Z=2 and Dcalc=7.466 g/cm3. Using the high temperature powder X-ray diffraction (HTXRD) technique, the lattice thermal expansion behavior of the compound was investigated in the temperature range of 298–648 K, and the result shows that its unit-cell parameters increased anisotropically when temperature increased. The magnetic susceptibility measured in the temperature range of 5–300 K indicated antiferromagnetic order of Nd2Cu0.8Ge3 at low temperatures, and the magnetic susceptibility can be well described over the range of 50–300 K using Curie–Weiss law. The calculated effective magnetic moment (μeff) is 3.53 μB and dominated by the contribution of the Nd3+ ions.  相似文献   

16.
The stability of various amounts of Ba3Cu3In4O12 (334) or BaTbO3 (BTO) in a sintered YBa2Cu3Oy (YBCO) matrix was examined. Samples with added 334 or BTO exhibited critical temperatures (Tc) above 90 K for up to 20 vol.% addition and improved critical current densities (Jc) under a magnetic field. X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) analysis indicated that 334 and BTO did not react with the YBCO matrix under the sintering conditions used. The normalized Jc under a magnetic field of 1 T reached a maximum at 14 vol.% of 334 addition and 20 vol.% BTO addition. YBCO thin films with added BTO showed a gradual decrease in the Tc with increasing BTO content. YBCO films with added 334 showed a constant Tc of 87 K up to a 334 content of 4 vol.%.  相似文献   

17.
Lattice constants, electrical resistivity, heat capacity, AC and DC magnetic susceptibility and 151Eu Mössbauer effect studies on a new intermetallic compound, Eu2PdSi3, found to crystallize in an AlB2-derived hexagonal crystal structure, are reported. The results establish that the Eu ions are in the divalent state down to low temperatures, undergoing two magnetic transitions, one at 40 K and the other at 10 K, pertaining to two different Eu sites. Interestingly, the minority Eu ions at the 2(b) sites order at a relatively high temperature (40 K) and this magnetic interaction is inferred to be ferromagnetic and quasi one-dimensional along the c-axis. The magnetic structure below 5 K following magnetic ordering (at 10 K) of the majority ions at 6(h) sites appears to be quite complex. In short, the crystallographic and (hence) the overall magnetic behaviors of this compound present an interesting situation.  相似文献   

18.
The results of heat capacity (C), electrical resistivity (ρ) and magnetoresistance (Δρ/ρ) measurements on the compounds Pr1−xLaxCo2Si2 (x=0, 0.2, 0.4, 0.6, 0.8, 1.0) and Pr1−yYyCo2Si2 (y=0.2, 1.0) are reported. The Pr sub-lattice dilution studies on the PrCo2Si2 compound indicate that in spite of the anomalously high antiferromagnetic ordering temperature (31 K), the RKKY interaction is responsible for magnetic ordering in this compound. The paramagnetic to antiferromagnetic transition temperature in Pr0.8Y0.2Co2Si2 is lower than that expected due to the positive chemical pressure effect. In contrast to the three magnetic transitions in PrCo2Si2 at 31, 17 and 9 K, there are only two magnetic transitions in Pr0.8La0.2Co2Si2 and Pr0.8Y0.2Co2Si2 above 3 K. The Δρ/ρ of PrCo2Si2 at 3 K is large (>20%) and positive for fields around 40 kOe. The metamagnetic transition observed in the Δρ/ρ data of Pr1−xLaxCo2Si2 and Pr0.8Y0.2Co2Si2 compounds has a systematic variation with composition.  相似文献   

19.
Melt-spun Nd13Dy2Fe77−xCoxC6B2 (x=0, 5, 10, 15, 20) ribbons with a high coercivity more than 2 T have been obtained. It was found that the ribbons quenched at the optimum wheel speed 15 m/s (as-spun ribbons) mainly consist of ferromagnetic 2 : 14 : 1 phase and paramagnetic NdC2 phase, and the ribbons spun at 25 m/s and subsequently annealed at 973 K for 15 min (as-annealed ribbons) are primarily composed of the magnetic 2 : 14 : 1 and 2 : 17 phases. The magnetization process of as-spun ribbons controlled by a pinning of the domain wall is different from that of as-annealed ribbons determined by a nucleation of the reverse domain. This significant difference originates possibly from the existence of paramagnetic NdC2 phase acting as a pinning center in as-spun ribbons. In the as-annealed ribbons, the substitution of Co for Fe leads to increase of remanence (μ0Mr), maximum energy product ((BH)max) from 0.67 T, 9.7 MGOe for x=0 to 0.84 T, 14.4 MGOe for x=10, respectively. A coercivity of 2.74 T is obtained for as-quenched Nd13Dy2Fe77−xCoxC6B2 (x=0) ribbons.  相似文献   

20.
The magnetic properties of Fe2O3 nanoparticles (average diameter ∅≅3 nm) in alumina (68% Fe2O3 in weight) have been investigated by magnetization measurements. The results indicate a superparamagnetic behavior of interacting particles, which block with decreasing temperature (the zero-field-cooled susceptibility shows a maximum at T≅145 K) with a distribution of relaxation times. A change of magnetic regime is observed below ∼60 K, due to the increasing interparticle interactions and local surface anisotropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号