首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 321 毫秒
1.
The electronic bandstructure calculations for Cd2Re2O7 and Cd2Os2O7 are performed by using an FLAPW method based on the local density approximation, where the spin–orbit interactions are taken into account. It is found that the spin–orbit interaction changes significantly Re/Os-5d (t2g) band dispersion situated near the Fermi level. Cd2Re2O7 is a semi-metal, the Fermi level is located just in the valley, the specific heat coefficient is calculated as 2.7 mJ/K2 mol Re and the carrier number is 0.039/cell in each hole and electron. The Re/Os-5d bands hybridize well with the O-p bands so that the Re/Os-5d component significantly appears even in the bottom of the wide O-p bands. Therefore, it is important to consider Re-5d O-p hybridization to investigate the physical properties of these compounds.  相似文献   

2.
A series of superconducting cuprates with the nominal composition YBa2Cu3  xCdxO7  yand the effect of Cd substitution on Cu sites in this compound is presented. X-ray powder diffraction patterns for these cadmium cuprates with reduced diamagnetism indicate an orthorhombic unit cell like-perovskite structure for (0  x  0.15), while for higher Cd concentration, i.e.x = 1.0 the material is polyphasic. The observed superconducting transition temperature of the samples is nearly the same ([formula] K), except for (x = 1.0) whereTcdrops to 72 K and a transition from metallic to semiconducting behavior of the normal state of the resistivity is observed. Such a decrease inTcfor higher Cd concentration could be attributed to the presence of the green phase in this composition.  相似文献   

3.
A series of Gd2Zr2O7 (GZO) single buffer layers with different thicknesses were epitaxially grown on highly textured Ni–5 at.% W tapes using pulsed laser deposition. These allow the subsequent growth of high-quality superconducting YBa2Cu3O7?δ layers. The superconducting transition temperature Tc reaches a maximum value of 92.4 K as well as a narrow transition width of 0.8 K for the optimized GZO layer thickness. The inductive measurements show the critical current density as high as 1.2 MA/cm2 at 77 K in self-field, indicating that a GZO single buffer layer is a suitable alternative for simplifying the second generation high Tc superconducting coated conductors architecture.  相似文献   

4.
《Solid State Ionics》2006,177(13-14):1149-1155
The Lu2+xTi2−xO7−x/2 (x = 0; 0.052; 0.096; 0.286; 0.44; 0.63; 33.3–49 mol% Lu2O3) nanoceramics with partly disordered pyrochlore-type structure are prepared by sintering freeze-dried powders obtained by a co-precipitation technique with 1600 °C annealing. Similar to pyrochlore-like compositions in the zirconate system, some of the new titanates are good oxide-ion conductors in air. The new solid-state electrolytes have oxide-ion conductivity in the interval of 1.0 × 10 3  2.5 × 10 S/cm at 740 °C in air. This value of conductivity is comparable with that of ZrO2/Y2O3 ceramics. The conductivity of Lu2+xTi2−xO7−x/2 depends on the chemical composition. The highest ionic conductivity is exhibited by nearly stoichiometric Lu2+xTi2−xO7−x/2 (x = 0.096; 35.5 mol% Lu2O3) material containing ∼ 4.8 at.% LuTi anti-site defects.  相似文献   

5.
I consider the extended two-band s–f model with additional terms, describing inter-site Cooper pairs interaction between two-subsystems s and f, respectively. Following Green’s function technique and equation of motion method self-consistent equations for superconducting order parameter (Δ) and magnetic order parameter (mf) are derived. The expressions for specific heat, density of states, and free energy are also derived. The theory has been applied to explain the coexistence of superconductivity and ferromagnetism in hybrid rutheno-cuprate superconductors RuSr2RECu2O8 (RE = Gd, Eu). The theory shows that it is possible to become superconducting via a second order phase transition if the system is already ferromagnetic. The agreement between theory and experimental observations is quite satisfactory.  相似文献   

6.
Shanwen Tao 《Solid State Ionics》2009,180(2-3):148-153
SnP2O7 and In-doped SnP2O7 have been prepared by an aqueous solution method using (NH4)2HPO4 as phosphorous source. It was found that the solid solution limit in Sn1 ? xInx(P2O7)1 ? δ was at least x = 0.12. All pyrophosphates in the Sn1 ? xInx(P2O7)1 ? δ (x  0.12) series exhibit 3 × 3 × 3 superlattice structures. The conductivities of Sn0.92In0.08(P2O7)1 ? δ in air are 6.5 × 10? 6 and 8.0 × 10? 9 S/cm at 900 and 400 °C, respectively, when prepared by an aqueous solution method and annealed at 1000 °C. The conductivity of undoped SnP2O7 is slightly lower. However, it was also found that the low-temperature conductivities of pyrophosphates annealed only at 650 °C are several orders of magnitude higher than those annealed at 1000 °C, which could be related to a trace amount of an amorphous secondary phase. The peak conductivity was in this case observed at around 250 °C, which is the same temperature as previously observed in In-doped SnP2O7 although the conductivity is still three orders of magnitude lower in the present study. These differences can be related to large differences in particle size and morphology, and all in all, the conductivities of SnP2O7-based materials are very sensitive to the synthetic history.  相似文献   

7.
In this work the Nb2InC phase is investigated by X-ray diffraction, heat capacity, magnetic and resistivity measurements. Polycrystalline samples with Nb2InC nominal compositions were prepared by solid state reaction. X-ray powder patterns suggest that all peaks can be indexed with the hexagonal phase of Cr2AlC prototype. The electrical resistance as a function of temperature for Nb2InC shows superconducting behavior below 7.5 K. The M(H) data show typical type-II superconductivity with HC1  90 Oe at 1.8 K. The specific heat data are consistent with bulk superconductivity. The Sommerfeld constant is estimated as γ  12.6 mJ mol?1 K?1.  相似文献   

8.
We studied the effect of TiO2 doping on flux pinning and superconducting properties of a melt-grown (Nd0.33Eu0.33Gd0.33) Ba2Cu3Oy + 35 mol% Gd2BaCuO5 (70 nm in size) composite (NEG-123) processed in Ar–1% O2 atmosphere. As indicated by similar, sharp superconducting transitions, the small quantities of TiO2 used in our experiments did not deteriorate superconducting properties of the NEG material. Transmission electron microscopy (TEM) analysis found 20–50 nm Ti-based particles in the NEG-123 matrix. However, we have not observed the clouds of <10 nm sized particles in the NEG-123 matrix, as in the case of recently reported NEG-123 composites doped by Mo and Nb nanoparticles. Nevertheless, quite a good JcB performance in the 0.1 mol% Ti-doped sample, namely 550 kA/cm2 at the self-field and at the secondary peak field (4.5 T) was achieved at 65 K, while 320 kA/cm2 was obtained at zero-field at 77 K, and 50 kA/cm2 at 90.2 K. The pinning effectiveness decreased with increasing Ti content above 0.2 mol%. The analysis of the pinning force showed that higher concentration of Ti (>0.2 mol%) increased the amount of normal pins (δl pinning), indicated by the Fp(h) peak shift from h = 0.42–0.36. The maximum pinning effect in a broad field range could be achieved by optimizing Ti content and adding sub-micron Gd-211 particles.  相似文献   

9.
Low-field ac measurements of magnetic susceptibility of YBa2Cu3O7 high-temperature superconducting thin film were carried out over a wide range of temperatures and ac magnetic field amplitudes. A strong field dependence of the real χ′ and imaginary χ″ components was observed. The field dependence of the imaginary component is used to extract the temperature dependence of the critical current density in the sample using the critical state model. The exponent β of the power law relation Jc  (1 ? T/Tc)β was determined from ac-susceptibility data and different values were found. Experimental results are compared with predictions of some existing theoretical models describing the ac response of superconducting thin film in perpendicular ac field.  相似文献   

10.
The superconducting gap in FeAs-based superconductor SmFeAs(O1?xFx) (x = 0.15 and 0.30) and the temperature dependence of the sample with x = 0.15 have been measured by Andreev reflection spectroscopy. The intrinsic superconducting gap is independent of contacts while many other “gap-like” features vary appreciably for different contacts. The determined gap value of 2Δ = 13.34 ± 0.47 meV for SmFeAs(O0.85F0.15) gives 2Δ/kBTC = 3.68, close to the BCS prediction of 3.53. The superconducting gap decreases with temperature and vanishes at TC, in a manner similar to the BCS behavior but dramatically different from that of the nodal pseudogap behavior in cuprate superconductors.  相似文献   

11.
Fluctuations on the electrical conductivity of polycrystalline YBa2Cu3O7?δ + xBaZrO3 (x = 1.0, 2.5, 5.0 and 10.0 wt.%) superconductors were investigated from the resistivity vs. temperature data for zero field and 8 T (Tesla) external magnetic fields. Attempts have been made to identify the optimum inclusion of BaZrO3 (BZO) in YBa2Cu3O7?δ (YBCO) superconductors. The phase formation, texture and grain alignments were analyzed by XRD and SEM techniques. Then the effects of superconducting fluctuations on the electrical conductivity of granular composite superconductors were studied for zero field and 8 T external magnetic fields. Though inclusions of BZO sub-micron particles are not expected to influence superconducting order-parameter fluctuation (SCOPF) much, the transition from 2D to 3D of the order parameter in the mean-field region depends on the BZO content in the composites. It has been observed that BZO residing at the grain boundary of YBCO matrix influences the tailing region without having significant change in the mean-field critical temperature. In the present work, attention has been focused mostly in the experimental domain relatively above the Tc. It reveals that, 1 wt.% composite exhibits a better superconducting property in comparison with pure YBCO.  相似文献   

12.
Nanoscale Co3O4 particles were doped into MgB2 tapes with the aim of developing superconducting wires with high-current-carrying capacity. Fe-sheathed MgB2 tapes with a mono-core were prepared using the in situ powder-in-tube (PIT) process with the addition of 0.2–1.0 mol% Co3O4. The critical temperature decreased monotonically with an increasing amount of doped Co3O4 particles for all heat-treatment temperatures from 600 to 900 °C. However, the transport critical current density (Jc) at 4.2 K varied with the heat-treatment temperatures. The Jc values in magnetic fields ranging from 7 to 12 T decreased monotonically with increasing Co3O4 doping level for a heat-treatment temperature of 600 °C. In contrast, some improvements on the Jc values of the Co3O4 doped tapes were observed in the magnetic fields below 10 T for 700 and 800 °C. Furthermore, Jc values in all the fields measured increased as the Co3O4 doping level increase from 0 to 1 mol% for 900 °C. This heat-treatment temperature dependence of the Jc values could be explained in terms of the heat-treatment temperature dependence of the irreversibility field with Co3O4 doping.  相似文献   

13.
《Solid State Ionics》2006,177(26-32):2363-2368
The mechanism and kinetics of water incorporation in the double perovskites Ва4Ca2Nb2O11 and Sr6Ta2O11 has been investigated (T = 300÷500 °C and aH2O = 1 · 10 3÷2.2 · 10 2). The formation of hydration products Ba4Ca2Nb2O11·xH2O and Sr6Ta2O11·xH2O (0.2 < x < 0.50) was limited by the diffusion of H2O. It has been found that the concentration dependences of H2O are the same for both samples: small increasing of H2O with increasing x. The temperature dependences of the chemical diffusion coefficients of water for compositions of Ba4Ca2Nb2O11·0.35H2O and Sr6Ta2O11·0.35H2O could be described with close activation energies of Ea = 0.38 ± 0.03 eV and Ea = 0.49 ± 0.03 eV, respectively. The chemical diffusion coefficients of water are nearly one order of magnitude smaller for tantalate Sr6Ta2O11. This result correlates with lower oxygen and proton conductivities in Sr6Ta2O11 as the consequence of lower mobilities.  相似文献   

14.
Hydrogen peroxide (H2O2) and hydroperoxy (HO2) reactions present in the H2O2 thermal decomposition system are important in combustion kinetics. H2O2 thermal decomposition has been studied behind reflected shock waves using H2O and OH diagnostics in previous studies (Hong et al. (2009) [9] and Hong et al. (2010) [6,8]) to determine the rate constants of two major reactions: H2O2 + M  2OH + M (k1) and OH + H2O2  H2O + HO2 (k2). With the addition of a third diagnostic for HO2 at 227 nm, the H2O2 thermal decomposition system can be comprehensively characterized for the first time. Specifically, the rate constants of two remaining major reactions in the system, OH + HO2  H2O + O2 (k3) and HO2 + HO2  H2O2 + O2 (k4) can be determined with high-fidelity.No strong temperature dependency was found between 1072 and 1283 K for the rate constant of OH + HO2  H2O + O2, which can be expressed by the combination of two Arrhenius forms: k3 = 7.0 × 1012 exp(550/T) + 4.5 × 1014 exp(?5500/T) [cm3 mol?1 s?1]. The rate constants of reaction HO2 + HO2  H2O2 + O2 determined agree very well with those reported by Kappel et al. (2002) [5]; the recommendation therefore remains unchanged: k4 = 1.0 × 1014 exp(?5556/T) + 1.9 × 1011+exp(709/T) [cm3 mol?1 s?1]. All the tests were performed near 1.7 atm.  相似文献   

15.
A brief review of optical and Raman studies on the Fe-based superconductors is given, with special emphasis on the competing phenomenon in this system. Optical investigations on ReFeAsO (Re = rare-earth element) and AFe2As2 (A = alkaline-earth metal) families provide clear evidence for the gap formation in the broken symmetry states, including the partial gaps in the spin-density wave states of parent compounds, and the pairing gaps in the superconducting states for doped compounds. Especially, the superconducting gap has an s-wave pairing lineshape in hole-doped BaFe2As2. Optical phonons at zone center detected by Raman and infrared techniques are classified for several Fe-based compounds. Related issues, such as the electron–phonon coupling and the effect of spin-density wave and superconducting transitions on phonons, are also discussed. Meanwhile, open questions including the T-dependent mid-infrared peak at 0.6–0.7 eV, electronic correlation, and the similarities/differences between high-Tc cuprates and Fe-based superconductors are also briefly discussed. Important results from other experimental probes are compared with optical data to better understand the spin-density wave properties, the superconductivity, and the multi-band character in Fe-based compounds.  相似文献   

16.
The effect of the growth rate on the Bi2Sr2CaCu2Oy (Bi2212) thin film quality on MgO substrate is investigated at several growth rates from 0.175 to 3 nm/min. The maximal step height on the film surface is improved from about 100 to 6 nm by the reduction of growth rate to 0.5 nm/min and simultaneously the superconducting critical temperature attaining to a zero resistance Tc(R=0), is also improved from 50 to 63 K. The surface morphologies of the upmost Bi-superconducting thin films with the intermediate layers on MgO substrate is also studied in contrast to that deposited directly on the MgO substrate.  相似文献   

17.
Sm1+xBa2?xCu3+yO7?δ (SmBCO) films were directly deposited on the epi-MgO/IBAD-MgO/Y2O3/Al2O3/Hastelloy template by co-evaporation using the evaporation using drum in dual chambers (EDDC) system without the buffer layer in order to investigate the effect of the composition ratios on superconducting property, microstructure and texture of SmBCO film. The films with gradient composition ratios of Sm:Ba:Cu were deposited using a shield with an opening which was placed between the substrate and the boats. The highest Ic of 52 A (corresponding to Jc = 1.6 MA/cm2 and a thickness of 800 nm) was observed at 77 K in self field at a composition x = 0.01–0.05 and y = ?0.23 to ?0.46. When the composition ratio is outside this range, the Ic value rapidly decreased. The superconducting critical current was highly dependent on the composition ratio. As the composition ratio is farther away from that of the highest Ic, the SmBCO (1 0 3) peak intensity increased and the amount of a-axis oriented parts increased. A dense microstructure with round-shape grains was observed in the region showing the highest Ic. The optimum composition ratio can be found by analyzing films deposited with variable deposition rates of each depositing element.  相似文献   

18.
The series of Gd4 ? xMxAl2O9 ? x/2 (M = Ca, Sr) with x = 0, 0.01, 0.05, 0.10 and 0.25 was prepared by the citrate complexation method. Both Gd4 ? xCaxAl2O9 ? x/2 and Gd4 ? xSrxAl2O9 ? x/2 show the monoclinic cuspidine structure with space group of P21/c up to 0.05–0.1 and 0.01–0.05 mol for Ca and Sr, respectively. Beyond the substitution limit of Gd4Al2O9, GdAlO3 and SrGd2Al2O7 appear as additional phases. The highest electrical conductivity obtained at 900 °C yielded σ = 1.49 × 10? 4 S/cm for Gd3.95Ca0.05Al2O8.98. In comparison, the conductivity of pure Gd4Al2O9 was σ = 1.73 × 10? 5 S/cm. The conductivities determined are in a similar range as those of other cuspidine materials investigated previously. The thermal expansion coefficient of Gd4Al2O9 at 1000 °C was 7.4 × 10? 6 K? 1. The phase transition between 1100 and 1200 °C reported earlier changes with increasing substitution of Ca and Sr.  相似文献   

19.
In a point contact NS junction, perfect Andreev reflection occurs over a range of voltages equal to the superconducting energy gap, producing an excess current of Iexc =  (4 / 3)(2 eΔ / h). If the superconductor has a finite width, rather than the infinite width of the point contact, one cannot neglect superfluid flow inside the superconducting contact. The energy range available for perfect Andreev reflections then becomes larger than the superconducting gap, since superfluid flow alters the dispersion relation inside the finite width superconductor. We find a maximum excess current of approximately (7 / 3)(2 eΔ / h) when the width of the superconductor is approximately 7 / 3 times the width of the normal metal.  相似文献   

20.
Ferrimagnetism has been extensively studied in garnets, whereas it is rare to find the antiferromagnet. Present work will demonstrate antiferromagnetism in the two Mn–V-garnets. Antiferromagnetic phase transition in AgCa2Mn2V3O12 and NaPb2Mn2V3O12 has been found, where the magnetic Mn2+ ions locate only on octahedral A site. The heat capacity shows sharp peak due to antiferromagnetic order with the Néel temperature TN=23.8 K for AgCa2Mn2V3O12 and TN=14.2 K for NaPb2Mn2V3O12. The magnetic entropy change over a temperature range 0–50 K is 13.9 J K?1 mol-Mn2+-ions?1 for AgCa2Mn2V3O12 and 13.6 J K?1 mol-Mn2+-ions?1 for NaPb2Mn2V3O12, which are in good agreement with calculated value of Mn2+ ion with spin S=5/2. The magnetic susceptibility shows the Curie–Weiss behavior over the range 29–350 K. The effective magnetic moment μeff and the Weiss constant θ are μeff=6.20 μB Mn2+-ion?1 and θ=?34.1 K (antiferromagnetic sign) for AgCa2Mn2V3O12 and μeff=6.02 μB Mn2+-ion?1 and θ=?20.8 K for NaPb2Mn2V3O12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号