首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Solvent and physical treatment are widely used in egg yolk processing, but the detailed changes in the molecular structure of egg yolk proteins during processing are unclear. The aim of this study was to investigate the effects of ethanol and ultrasonic treatments on chicken egg yolk low-density lipoprotein (LDL). The solubility, emulsifying activity and emulsifying stability decreased by 74.75%, 46.91%, and 81.58% after ethanol treatment, respectively. The average particle size of ethanol-treated LDL increased 13.3-fold to 937.85 nm. These results suggested that ethanol treatment induced wide-ranging aggregation of LDL. In contrast to ethanol treatment, ultrasonic treatment promoted the solubility and emulsifying stability of LDL and enhanced its zeta-potential (119.56%) and surface hydrophobicity (10.81%). Based on particle size analysis and transmission electron microscopy, approximately 34.65% of LDL had undergone aggregation and the molecular interface became more flexible after ultrasonic treatment. These results revealed the detailed changes in egg yolk LDL structure and properties during solvent (ethanol) and physical (ultrasound) processing.  相似文献   

2.
In this study, high intensity ultrasonication (HIU) was employed as an efficient tool to improve the gel property and in vitro digestibility of marinated egg (ME). The effects of HIU treatment at 100 W and 200 W for a series of time periods (0.5 h, 1 h, and 2 h) on the textural profiles, structural changes, and microstructures were also studied. After HIU treatment, the springiness and gumminess of ME white were enhanced. The water holding capacity reached the highest point (66.6%) when 0.5 h 200 W HIU was used. It was observed that 100 W HIU led to the highest zeta potential (-12.0 mV) and hydrophobicity (175.35 μg) of ME, indicating a high degree of electrostatic repulsion prevented agglomeration. HIU treatment at 100 W affected the dynamic rheological behaviors by boosting non-covalent bonds, which maintains the gel network's homogeneity. Meanwhile, the decreasing formation of α-helix, in contrast to β-turn, altered the aggregation behaviors of egg white gel. The microstructure of the 200 W HIU treated samples had porous colloidal network structures, and the in vitro digestibility (>75%) was increased after HIU. This work demonstrated that HIU could be a green and cost-effective tool for processing the egg product with high quality.  相似文献   

3.
The denaturation and lower solubility of commercial potato proteins generally limited their industrial application. Effects of high-intensity ultrasound (HIU) (200, 400, and 600 W) and treatment time (10, 20, and 30 min) on the physicochemical and functional properties of insoluble potato protein isolates (ISPP) were investigated. The results revealed that HIU treatment induced the unfolding and breakdown of macromolecular aggregates of ISPP, resulting in the exposure of hydrophobic and R–SH groups, and reduction of the particle size. These active groups contributed to the formation of a dense and uniform gel network of ISPP gel and insoluble potato proteins/egg white protein (ISPP/EWP) hybrid gel. Furthermore, the increase of solubility and surface hydrophobicity and the decrease of particle size improved the emulsifying property of ISPP. However, excessive HIU treatment reduced the emulsification and gelling properties of the ISPP. Meanwhile, HIU treatment changes the secondary structure of ISPP. It could be speculated that the formation of a stable secondary structure of ISPP initiated by cavitation and shearing effect might play a dominant role on gel strengthens and firmness. Meanwhile, the decrease in relative content of β-turn had a positive effect on the formation of small particle to improve emulsifying property of ISPP.  相似文献   

4.
High-intensity ultrasound (HIU) is considered one of the promising non-chemical eco-friendly techniques used in food processing. Recently (HIU) is known to enhance food quality, extraction of bioactive compounds and formulation of emulsions. Various foods are treated with ultrasound, including fats, bioactive compounds, and proteins. Regarding proteins, HIU induces acoustic cavitation and bubble formation, causing the unfolding and exposure of hydrophobic regions, resulting in functional, bioactive, and structural enhancement. This review briefly portrays the impact of HIU on the bioavailability and bioactive properties of proteins; the effect of HIU on protein allergenicity and anti-nutritional factors has also been discussed. HIU can enhance bioavailability and bioactive attributes in plants and animal-based proteins, such as antioxidant activity, antimicrobial activity, and peptide release. Moreover, numerous studies revealed that HIU treatment could enhance functional properties, increase the release of short-chain peptides, and decrease allergenicity. HIU could replace the chemical and heat treatments used to enhance protein bioactivity and digestibility; however, its applications are still on research and small scale, and its usage in industries is yet to be implemented.  相似文献   

5.
This study aimed to evaluate the potential of time-dependent (0, 15, 30, 60, 120 min) treatment of porcine-derived myofibrillar proteins (MPs) with high-intensity ultrasound (HIU) for utilizing them as a Pickering stabilizer and decipher the underlying mechanism by which HIU treatment increases the emulsification and dispersion stability of MPs. To accomplish this, we analyzed the structural, physicochemical, and rheological properties of the HIU-treated MPs. Myosin heavy chain and actin were observed to be denatured, and the particle size of MPs decreased from 3,342.7 nm for the control group to 153.9 nm for 120 min HIU-treated MPs. Fourier-transformed infrared spectroscopy and circular dichroism spectroscopy confirmed that as the HIU treatment time increased, α-helical content increased, and β-sheet decreased, indicating that the protein secondary/tertiary structure was modified. In addition, the turbidity, apparent viscosity, and viscoelastic properties of the HIU-treated MP solution were decreased compared to the control, while the surface hydrophobicity was significantly increased. Analyses of the emulsification properties of the Pickering emulsions prepared using time-dependent HIU-treated MPs revealed that the emulsion activity index and emulsion stability index of HIU-treated MP were improved. Confocal laser scanning microscopy images indicated that small spherical droplets adsorbed with MPs were formed by HIU treatment and that dispersion stabilities were improved because the Turbiscan stability index of the HIU-treated group was lower than that of the control group. These findings could be used as supporting data for the utilizing porcine-derived MPs, which have been treated with HIU for appropriate time periods, as Pickering stabilizers.  相似文献   

6.
This study evaluated the effects of high intensity ultrasonication (HIU, 100, 150, 200, and 250 W) and treatment time (0, 3, 6, 9, and 12 min) on the structure and emulsification properties of myofibrillar proteins (MPs) from Coregonus peled. These investigations were conducted using an ultrasonic generator at a frequency of 20 kHz (ultrasonic probe). Analysis of the carbonyl content and total number of sulfhydryl groups showed that HIU significantly improved the oxidative modification of MPs (P < 0.05). SDS-PAGE profiling showed significant degradation of the myosin heavy chain (P < 0.05). In addition, Fourier transformed infrared spectroscopy (FTIR) revealed that HIU altered these treated MP secondary structures, this was due to molecular unfolding and stretching, exposing interior hydrophobic groups. Particle size analysis showed that HIU treatment reduced particle sizes. Solubility, emulsification capacity, and emulsion stability were improved significantly, and each decreased with an increase in treatment time (up to 12 min), indicating aggregation with prolonged sonication. These results indicate that HIU could improve the emulsification properties of MPs from C. peled, demonstrating a promising method for fish protein processing.  相似文献   

7.
In this study, a soy protein isolate (SPI)-pectin (PC) complex was prepared, and the effects of different high intensity ultrasound (HIU) powers on the structure and solubility of the complex were studied. Fourier transform infrared (FTIR) spectroscopy analysis exhibited that with increasing HIU power, the α-helix content of the SPI in the complex was significantly reduced, and the random coil content increased; however, an opposite trend appeared after higher power treatments. Fluorescence spectra showed that HIU treatment increased the fluorescence intensity of the complex, and the surface hydrophobicity was increased. The trend of the protein structure studied by Raman spectroscopy was similar to that of FTIR and fluorescence spectroscopy. When the HIU treatment was performed for 15 min and at 450 W power, the particle size of the complex was 451.85 ± 2.17 nm, and the solubility was 89.04 ± 0.19 %, indicating that the HIU treatment caused the spatial conformation of the protein to loosen and improved the functional properties of the complex. Confocal laser scanning microscopy (CLSM) revealed that the complex after HIU treatment exhibited improved dispersibility in water and smaller particle size. Gel electrophoresis results indicated that HIU treatment did not affect the protein subunits of the complex. Therefore, the selection of a suitable HIU treatment power can effectively improve the structural properties and solubility of SPI in the complex, and promote the application of the SPI-PC complex in food processing and industries.  相似文献   

8.
The influence of high-intensity ultrasound (HIU) on the technofunctional properties and structure of jackfruit seed protein isolate (JSPI) was investigated. Protein solutions (10%, w/v) were sonicated for 15 min at 20 kHz to the following levels of power output: 200, 400, and 600 W (pulse duration: on-time, 5 s; off-time 1 s). Compared with untreated JSPI, HIU at 200 W and 400 W improved the oil holding capacity (OHC) and emulsifying capacity (EC), but the emulsifying activity (EA) and emulsion stability (ES) increased at 400 W and 600 W. The foaming capacity (FC) increased after all HIU treatments, as opposed to the water holding capacity (WHC), least gelation concentration (LGC), and foaming stability (FS), which all decreased except at pH 4 for FS. Tricine sodium dodecyl sulfate polyacrylamide gel electrophoresis (Tricine-SDS-PAGE) showed changes in the molecular weight of protein fractions after HIU treatment. Scanning electron microscopy (SEM) demonstrated that HIU disrupted the microstructure of JSPI, exhibiting larger aggregates. Surface hydrophobicity and protein solubility of the JSPI dispersions were enhanced after ultrasonication, which increased the destruction of internal hydrophobic interactions of protein molecules and accelerated the molecular motion of proteins to cause protein aggregation. These changes in the technofunctional and structural properties of JSPI could meet the complex needs of manufactured food products.  相似文献   

9.
Surimi from silver carp with different salt contents (0–5%) was obtained treated by high intensity ultrasound (HIU, 100 kHz 91 W·cm−2). The gelation properties of samples were evaluated by puncture properties, microstructures, water-holding capacity, dynamic rheological properties and intermolecular interactions. As the salt content increased from 0 to 5%, gel properties of surimi without HIU significantly improved. For samples with low-salt (0–2% NaCl) content, HIU induced obvious enhancement in breaking force and deformation. HIU promoted the protein aggregation linked by SS bonds, hydrophobic interactions and non-disulfide covalent bonds in surimi gels with low-salt content. Moreover, microstructures of HIU surimi gels with low-salt content were more compact than those of the corresponding control samples. HIU also improved the gelation properties of surimi with 3% NaCl to an extent. However, for high-salt (4–5% NaCl) samples, HIU decreased the breaking force and deformation of surimi gels due to the degradation of proteins suggested by increased TCA-soluble peptides. In conclusion, HIU effectively improved the gelation properties of surimi with low-salt content (0–2% NaCl), but was harmful for high-salt (4–5% NaCl) surimi. This might provide the theoretical basis for the production of low-salt surimi gels.  相似文献   

10.
The present research aimed to investigate the effects of high-intensity ultrasound (HIU, 20 kHz, 0 W, 100 W, 300 W and 500 W)-assisted vacuum tumbling (UVT) for 60 min and 120 min on the oxidation and physicochemical properties of the pork myofibrillar proteins (MPs). Compared with the vacuum tumbling (VT) groups without the HIU assistance, the carbonyl content increased, while the total sulfhydryl (SH) content was reduced with the increase of HIU power and treatment time (P < 0.05). The reactive SH content was increased significantly after treated by UVT with 300 W compared with the VT group (P < 0.05) regardless of the treatment time. Similarly, the surface hydrophobicity (S0), the intrinsic tryptophan intensity, and the solubility in the UVT group (300 W) were remarkably higher than those of the VT group (P < 0.05). In contrast, the α-helix content and the particle size of MPs significantly decreased when the HIU power was at 100 W and 300 W (P < 0.05). The results suggest that UVT treatment could change the structure and physicochemical properties of MPs accompanied by protein oxidation.  相似文献   

11.
The effects of high intensity ultrasound (HIU, 105–110 W/cm2 for 5 or 40 min) pre-treatment of soy protein isolate (SPI) on the physicochemical properties of ensuing transglutaminase-catalyzed soy protein isolate cold set gel (TSCG) were investigated in this study. The gel strength of TSCG increased remarkably from 34.5 to 207.1 g for TSCG produced from SPI with 40 min HIU pre-treatment. Moreover, gel yield and water holding capacity also increased after HIU pre-treatments. Scanning electron microscopy showed that HIU of SPI resulted in a more uniform and denser microstructure of TSCG. The content of free sulfhydryl (SH) groups was higher in HIU TSCG than non-HIU TSG, even though greater decrease of the SH groups present in HIU treated SPI was observed when the TSCG was formed, suggesting the involvement of disulfide bonds in gel formation. Protein solubility of TSCG in both denaturing and non-denaturing solvents was higher after HIU pretreatment, and changes in hydrophobic amino acid residues as well as in polypeptide backbone conformation and secondary structure of TSCG were demonstrated by Raman spectroscopy. These results suggest that increased inter-molecular ε-(γ-glutamyl) lysine isopeptide bonds, disulfide bonds and hydrophobic interactions might have contributed to the HIU TSCG gel network. In conclusion, HIU changed physicochemical and structural properties of SPI, producing better substrates for TGase. The resulting TSCG network structure was formed with greater involvement of covalent and non-covalent interactions between SPI molecules and aggregates than in the TSCG from non-HIU SPI.  相似文献   

12.
This study investigated the effects of high-intensity ultrasound (HIU, 95 W, 10 s) on the physical properties, stability and in vitro digestion of β-carotene enriched oleogels. Candelilla wax (3 wt%) and nut oils (peanut, pine nut and walnut oil) with or without β-carotene were used to form oleogels. HIU improved the storage modules (G’) of peanut, pine nut and walnut oleogels without β-carotene from 11048.43 ± 728.85 Pa, 38111.67 ± 11663.98 Pa and 21921.13 ± 1011.55 Pa to 13502.40 ± 646.54 Pa, 75322.47 ± 9715.25 Pa and 48480.97 ± 4109.64 Pa, respectively. Moreover, HIU reduced oil loss of peanut, pine nut and walnut oleogels without β-carotene from 23.98 ± 2.58%, 17.14 ± 0.69% and 24.66 ± 1.57% to 17.60 ± 1.10%, 13.84 ± 0.74% and 18.72 ± 3.47%, respectively. X-ray diffraction patterns showed that HIU did not change the form of the crystal (β-polymorphic and β’-polymorphic) but increased the crystal intensity. Polarized light microscope images indicated that all oleogels showed more visible crystals after HIU. After 120 d of storage, HIU decreased the degradation of β-carotene for peanut oil and walnut oil samples (the contents of β-carotene in peanut and walnut oleogels without HIU after 120 d of storage were 897 ± 2 μg/g and 780 ± 1 μg/g, respectively, and those of sonicated samples were 1070 ± 4 μg/g and 932 ± 1 μg/g, respectively). Furthermore, HIU reduced the release of β-carotene in intestinal digestion. In conclusion, HIU could improve the functional properties of wax-nut oils oleogels and their β-carotene enriched oleogels.  相似文献   

13.
Effects of high intensity ultrasound (HIU) on physicochemical properties of tilapia (Oreochromis niloticus) actomyosin in low NaCl concentrations were investigated. The protein content extracted in low NaCl concentrations (0.1–0.3 M NaCl) increased with increasing HIU intensity up to 20.62 W/cm2 (p < 0.05). The effect of HIU on actomyosin extractability in high NaCl concentrations (0.6 and 1.2 M NaCl) was less obvious. Ca2+-ATPase activity and total sulfhydryl (SH) group content decreased in both 0.2 and 0.6 M NaCl. HIU showed more pronounced effect on oxidation of the SH groups in 0.6 M NaCl, while the reactive SH content at 0.2 M NaCl increased after a prolonged exposure to HIU, suggesting conformational changes induced by HIU. Surface hydrophobicity of actomyosin in 0.6 M NaCl increased with increasing ultrasonic intensity and exposure time to a higher degree than that in 0.2 M NaCl. A greater absolute value of the zeta potential of actomyosin subjected to HIU were also observed. The HIU treatments decreased the turbidity of actomyosin incubated at 40 and 60 °C. A drastic increase in the solubility of myosin heavy chain (MHC) and actin with 0.2 M NaCl were evident when HIU treatments were applied, but degradation of MHC occurred in both 0.2 and 0.6 M NaCl. Based on particle size and microstructure, actomyosin in 0.6 M NaCl underwent more disruption by HIU than that in 0.2 M NaCl. HIU induced protein unfolding and protein dissociation, enabling better extraction in a lower NaCl concentration.  相似文献   

14.
High-intensity ultrasound (HIU) has been used in the past to change fat crystallization and physical properties of fat crystalline networks. The objective of this work was to evaluate how HIU placed on different positions in a scraped surface heat exchanger (SSHE) using different processing conditions affect the physical properties of an interesterified palm olein. The sample was crystallized at two temperatures (20 °C and 25 °C) and two agitation rates (344/208 rpm and 185/71 rpm, barrels/pin worker). HIU (12.7 mm-diameter tip, 50% amplitude, 5 s pulses) was placed at three different positions within the SSHE. After processing, samples were stored at 25 °C for 48 h and analyzed according to the crystal morphology, solid fat content (SFC), oil binding capacity (OBC), melting behavior, viscoelasticity, and hardness. Physical properties were affected by crystallization conditions, by sonication, and by HIU position. The greatest improvement obtained was at 20 °C using low agitation when HIU was placed at the beginning of the SSHE. These conditions result in a sample with 98.9% of OBC, 274 kPa of viscoelasticity and 31 N of hardness. These results show that HIU can be used as an additional processing tool to improve physical properties of a palm-based fat and that the best improvement was obtained as a combination of crystallization conditions and HIU position.  相似文献   

15.
Abstract

The paper deals with the influence of high pressure treatment of fresh egg white on its properties and protein composition (individual amino-acids predicted as a function of pressure and time levels). The rheological properties are changed by high pressure from Newtonian to non-Newtonian behaviour, with increasing apparent viscosity as the pressure and time increased. The pH, whipping ability, foam stability, gel strength of heat induced gels after treatment and the whole protein content, were also predicted.

The results showed that the foam stability is increased with increasing pressure and time of processing. The foam volume is also increased with pressure. The pH did not change with pressure or time of processing. Composition of proteins as indicated by individual amino-acids did not exhibit statistically important changes. Gel strength of heat induced gels prepared from previously pressured liquid whites showed no important change of values with pressure or time of treatment. The modulus of elasticity showed a decrease for samples pressured to 400 MPa for 5 up to 15 minutes.  相似文献   

16.
High intensity ultrasound (HIU) is a technique with the potential to improve meat quality, however, more research is needed on its application within the chain of cold storage and freezing. This study evaluates the effect of HIU (40 kHz, 9.6 W/cm2, 20 and 40 min) and post-mortem development on the yield and physicochemical quality of rabbit meat in samples treated with HIU pre- and post-storage in a freezer (120 h at −20 °C). Twenty rabbit carcasses were vacuum packed 12 h post-mortem, placed in a fridge at 4 °C for 24 h, and divided in two groups (HIU application before or after freezing), before assigning the treatments. The results show that HIU before freezing produced intense and bright orange-yellow colours, whereas its application after freezing resulted in pale red tones. HIU application accelerates rigor mortis resolution when it is applied before freezing and causes a significant decrease in pH immediately following the HIU treatment. Post-freezing application of HIU is not recommended because it considerably increased weight loss and toughening of the meat when long exposure times were used (40 min). In contrast, a short treatment duration with HIU mitigated the effects of freezing and produced significant increases in water-holding capacity (WHC) after cold storage. The yield (weight loss) of the rabbit meat was not affected when HIU was applied pre-freezing. The application of HIU pre-freezing constitutes a promising technology because it increased the tenderness and the WHC of rabbit meat. However, more research is needed to improve the appearance before scaling up to industrial levels.  相似文献   

17.
In this study, soybean protein isolate (SPI) and pectin emulsion gels were prepared by thermal induction, and the effects of high intensity ultrasound (HIU) at various powers (0, 150, 300, 450 and 600 W) on the structure, gel properties and stability of emulsion gels were investigated. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) showed that the interaction between SPI and pectin was enhanced and the crystallinity of the emulsion gels was changed due to the HIU treatment. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) observations revealed that the particle size of the emulsion gels was decreased significantly by HIU treatment. The emulsion gel structure became more uniform and denser, which was conducive to storage stability. In addition, according to the low field nuclear magnetic resonance (LF-NMR) analysis, HIU treatment had no obvious impact on the content of bound water as the power increased to 450 W, while the content of free water decreased gradually and became immobilized water, which indicated that the water holding capacity of the emulsion gels was enhanced. Compared with untreated emulsion gel, differential scanning calorimetry (DSC) analysis showed that the denaturation temperature reached 131.9 ℃ from 128.2 ℃ when treated at 450 W. The chemical stability and bioaccessibility of β-carotene in the emulsion gels were improved significantly after HIU treatment during simulated in vitro digestion.  相似文献   

18.
The sonication-induced changes in the structural and thermal properties of proteins in reconstituted whey protein concentrate (WPC) solutions were examined. Differential scanning calorimetry, UV-vis, fluorescence and circular dichroism spectroscopic techniques were used to determine the thermal properties of proteins, measure thiol groups and monitor changes to protein hydrophobicity and secondary structure, respectively. The enthalpy of denaturation decreased when WPC solutions were sonicated for up to 5 min. Prolonged sonication increased the enthalpy of denaturation due to protein aggregation. Sonication did not alter the thiol content but resulted in minor changes to the secondary structure and hydrophobicity of the protein. Overall, the sonication process had little effect on the structure of proteins in WPC solutions which is critical to preserving functional properties during the ultrasonic processing of whey protein based dairy products.  相似文献   

19.
The poor water solubility of myofibrillar proteins (MPs) limits their application in food industry, and is directly related to the molecular behavior associated with myosin assembly into filaments. This study aims to explore the effect of high-intensity ultrasound (HIU) combined with nonenzymatic glycation on the solubility, structural characteristics, and filament-forming behavior of MPs in low ionic strength media. The results showed that the HIU (200–400 W) application could promote the subsequent glycation reaction between MPs and dextran (DX) and interfere with the electrostatic balance between myosin rods, suppressing the formation of filamentous myosin polymers. Glycated MPs pretreated by 400 W HIU had the highest solubility, which corresponded to the smallest particle size, highest zeta potential, and optimum storage stability (P < 0.05). Structure analysis and microscopic morphology observations suggested that the loss of the MP superhelix and the depolymerization of filamentous polymers were the main mechanisms for MP solubilization. In conclusion, HIU combined with glycation can effectively improve the water solubility of MPs by destroying or suppressing the assembly of myosin molecules.  相似文献   

20.
The effects of plasma functionalized water (PFW) and its combination with ultrasound (UPFW) on the functional and bioactive properties of small yellow croaker protein hydrolysates (SYPHs) produced from three enzymes were investigated. Fluorescence and UV–Vis spectroscopy indicated that SYPHs tended to unfold with increasing intensity and shift in wavelengths to more flexible conformations under PFW and UPFW treatments. Particle size distribution and microstructure analysis revealed that treatments could disrupt aggregation of protein molecules to increase the roughness, specific surface area, and decrease the particle size of peptides during hydrolysis. The partially denatured structure of SYPHs induced by treatments increased the susceptibility of the fish proteins to exogenous enzymes, thereby accelerating the hydrolytic process to yield peptides with improved solubility, decreased emulsifying and foaming properties, and improved enzyme-specific antioxidant properties. The results revealed that the functionality of SYPHs was influenced by the treatment method and the enzyme type employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号