首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N-ethylcarbazole/dodecahydro-N-ethylcarbazole (NEC/H12-NEC) is a promising LOHC, and the development of a catalyst with high activity and stability is the key to realizing its reversible hydrogen storage process. In this paper, ultrafine Pd nanocrystalline catalysts (Pd/LDHs-us) supported on Cl--intercalated MgAl LDHs were prepared by a simple ultrasonic-assisted reduction method and applied in the dehydrogenation of 12H-NEC. In the process of ultrasonic-assisted reduction, the instantaneous high temperature generated by cavitation decomposed part of the CO32– in LDHs interlayer, and promoted PdCl42- to enter the interlayer and become new intercalated ions. At the same time, hydroxyl groups on the surface of LDHs were excited to generate hydrogen radicals (•H) with strong reducibility, which reduced PdCl42- to Pd nanoparticles (PdNPs) in situ. The remaining Cl- ions continued to exist in the interlayer as intercalated ions. The agglomeration of PdNPs was effectively inhibited, and the average particle size was 1.8 nm, which was uniformly dispersed on LDHs, which improved the catalytic activity of Pd/LDHs-us. The coordination between PdNPs and oxygen in the hydroxyl groups on the surface of LDHs improved its catalytic stability. Using Pd/LDHs-us catalyst, the conversion rate of H12-NEC was 100.0 %, and the dehydrogenation efficiency was 99.3 % at 180℃. When the reaction temperature drops to 170℃, the dehydrogenation efficiency can still reach 94.6 %, showing excellent catalytic performance. The study of dehydrogenation kinetics shows that the apparent activation energy of Pd/LDHs-us catalyst is only 90.97 kJ/mol. This provides a new method and idea for the preparation of efficient dehydrogenation catalysts in the future.  相似文献   

2.
Herein, six kinds of PdNPs (including icosahedron, sphere, spindle, cube, rod, and wire) were synthesized via simple methods. The catalytic activities were investigated by the reduction reaction of Cr(VI) and Suzuki coupling reaction. Chemically synthesized morphologies of the six catalysis were characterized by transmission electron microscopy, field emission scanning electron microscopy, and X-ray diffraction, etc. Pd icosahedron shows a better catalytic property than other PdNPs with a rate constants 0.42 min?1 for the reduction of Cr(VI). Moreover, the electrocatalyst shows that Pd icosahedron possesses a bigger surface area of 8.56 m2/g than other nanoparticles, which is attributed to the better catalyst. The Pd icosahedron possesses a better catalytic property, attributing to the abundant exposed {111} facets with high activity on Pd icosahedron. The catalytic activities are closely related to the surface area with the following order: icosahedrons ≥ sphere > rod > spindle > cube > wire. The Pd icosahedron catalyst represents a strong activity for Suzuki coupling reaction as well, outweighting is 80%. The results reveal that Pd icosahedron acts as an efficient catalyst compared to other PdNPs (wire, rod, sphere, spindle, and cube).  相似文献   

3.
By varying the Pd thickness (tPd) from 0 to 8 nm in [Co/Pd]4/Co/Pd(tPd)/NiFe exchange springs, we demonstrate (i) continuous tailoring of the exchange coupling between a [Co/Pd]4/Co layer with perpendicular anisotropy, and a NiFe layer with an in-plane easy axis, (ii) tuning of the NiFe out-of-plane magnetization angle from 20 to 80, and (iii) an up to two-fold increase in the NiFe damping. The partial decoupling also results in a highly uniform NiFe magnetization. These properties make [Co/Pd]4/Co/Pd(tPd)/NiFe spring magnets ideal candidates for use as tilted polarizers, by combining stable and well-defined spin directions of its carriers with a high degree of angular freedom.  相似文献   

4.
Metribuzin is an herbicide that easily contaminates ground and surface water. Herein, La-doped ZnFe layered double hydroxide (LDH) was synthesized for the first time and used for the degradation of metribuzin via ultrasonic (US) assisted peroxydisulfate (PDS) activation. The synthesized LDH had a lamellar structure, an average thickness of 26 nm, and showed mesoporous characteristics, including specific surface area 110.93 m2 g−1, pore volume 0.27 cm3 g−1, and pore diameter 9.67 nm. The degradation efficiency of the US/La-doped ZnFe LDH/PDS process (79.1 %) was much greater than those of the sole processes, and the synergy factor was calculated as 3.73. The impact of the reactive species on the sonocatalytic process was evaluated using different scavengers. After four consecutive cycles, 10.8 % loss occurred in the sonocatalytic activity of the La-doped LDH. Moreover, the efficiency of the US/La-doped LDH/PDS process was studied with respect to the degradation of metribuzin in a wastewater matrix. According to GC–MS analysis, six by-products were detected during the degradation of metribuzin. Our results indicate that the US/La-doped ZnFe LDH/PDS process has great potential for efficient degradation of metribuzin-contaminated water and wastewater.  相似文献   

5.
In order to explore the effects of ultrasound on the formation of acetaldehyde and its mechanism in model wine solutions, ultrasound conditions and free radicals were investigated by response surface methodology and electron paramagnetic resonance spectroscopy (EPR), respectively. The results indicate that ultrasound does induce the production of acetaldehyde with the maximum amount under the conditions of ultrasound power density 0.2 W/cm2, 48 min and 32 °C. The hydroxyl radicals and the 1-hydroxyethyl free radicals are the main initiator and precursor for acetaldehyde, respectively. Furthermore, the stronger the 1-hydroxyethyl free radicals captured by EPR, the lower the formation of acetaldehyde. In addition, the content of Fe2+and ethanol also exerted a certain influence on the acetaldehyde formation. In conclusion, ultrasound does promote the production of acetaldehyde in the model wine solutions, which is beneficial for well understanding the mechanism of ultrasound in modifying the wine color and accelerating ageing.  相似文献   

6.
It is found that the exchange interaction of Co (5 nm)ferromagnetic layers via Pd in Co/Pd multilayer films and of Co (5 nm)and CoNi (5 nm) layers via the same nonmagnetic metal in Co/Pd/CoNi films can be both ferro-and antiferromagnetic. The period of the AF-F-AF oscillations is of the order of 0.8 nm, and the amplitude of the oscillations decays as a power-law function ~d Pd −2 . Pis’ma Zh. éksp. Teor. Fiz. 66, No. 7, 487–491 (10 October 1997)  相似文献   

7.
Sonoluminescence (SL) is an interesting physical effect which can convert acoustic energy into light pulses. Up to now, the microscopic mechanism of the SL has not yet been fully clear. It is known that hydroxyl radicals play the important role for SL from water. In this work, we take advantage of carbon nano-dots (CNDs) as free radical captors to modulate the hydroxyl radicals (OH) in SL effect. Through studying the single bubble SL (SBSL) from CND aqueous solution (CNDAS) with trace amount of CNDs, we find that the color of SBSL is tuned dramatically from blue in water to green in CNDAS. Two different SL mechanisms can be identified from emission spectrum. One comes from blackbody-like radiation and another is attributed from the characteristic emission with identified peaks. The decrease in the yield of H2O2 in the presence of CNDs suggests the modulation effect on SL via OH interacting with CNDs. By comparison of the CNDs before and after sonication, it is found that hydroxyl radicals generated during SL can take part in the chain-like oxidation of the chemical groups attached to the CNDs to form larger amount of carboxyl groups. The blackbody temperature of blackbody-like radiation decreases from 15,600 K in water to 11,300 K in CNDAS. Moreover, the emission from hydroxyl radicals and two new luminescent centers related to carboxyl groups are introduced in SL from CNDAS. These important and interesting findings indicate that by adding trace amount of CNDs in water, the effect of SBSL can be significantly modulated, which can provide a macroscopic phenomenon for gaining an insight into the microscopic mechanism of the SL effect.  相似文献   

8.
Ordered alloys of Pd3Fe are shown to readily absorbe hydrogen through electrolytic loading. The resultant ternary hydride phase is observed to retain the fcc structure of Pd3Fe with approximately the same lattice constant. The 57Fe hyperfine field determined by Mössbauer spectroscopy is found to be 30% smaller in the hydride compared to Pd3Fe. The reduction appears to be associated with a perturbation of the Pd moment by hydrogen. The results suggest the occupation of one type of interstitial site in the structure. The absence of the site in disordered Pd3Fe would explain the much smaller hydrogen capacity observed for this alloy.  相似文献   

9.
N-ethylcarbazole/dodecahydro-N-ethylcarbazole (NEC/12H-NEC) is one of the most attractive LOHCs, and it is of great significance to develop catalysts with high activity and reduce the hydrogen storage temperature. Layered double hydroxides-carbon nanotubes composites (LDH-CNT) were synthesized by a simple in-situ assembly method. Due to the introduction of CNT, a strong interaction occurred between LDH and CNT, which effectively improved the electron transfer ability of LDH-CNT. Ru/LDH-CNT catalysts were prepared via ultrasound-assisted reduction method without adding reducing agents and stabilizers. Under the cavitation effect of ultrasound, the hydroxyl groups on the surface of LDH were excited to generate hydrogen radicals (•H) with high reducibility, which successfully reduced Ru3+ to Ru NPs. Ru/LDH-3.9CNT-(300-1) catalyst was of 1.63 nm average Ru particle size with CNT amount of 3.9 wt% and the ultrasonic power of 300 W at 1 h, and its electron transfer resistance was less than that of Ru/LDH-(300-1). The synergy of ultrafine Ru NPs and fast electron transfer made it exhibit exceptional catalytic performance in NEC hydrogenation. Even if the reaction temperature was lowered to 80 °C, its hydrogenation performance was better than that of commercial Ru/Al2O3 catalyst at 120 °C. The ultrasound-assisted method is efficient, green and environmentally friendly, and the operation process is simple and economical. It is expected to be used in practical industrial production, which provides a reference for the preparation of high-activity and low-temperature hydrogen storage catalysts.  相似文献   

10.
This study is the first to explore the possibility of utilizing CuCr LDH decorated on reduced graphene oxide (rGO) and graphene oxide (GO) as sonophotocatalysts for the degradation of dimethyl phthalate (DMP). CuCr LDH and its nanocomposites were successfully fabricated and characterized. Scanning electron microscopy (SEM) along with high-resolution transmission electron microscope (HRTEM) both evidenced the formation of randomly oriented nanosheet structures of CuCr LDH coupled with thin and folded sheets of GO and rGO. The impact of diverse processes on the degradation efficiency of DMP in the presence of the so-prepared catalysts was compared. Benefiting from the low bandgap and high specific surface area, the as-obtained CuCr LDH/rGO represented outstanding catalytic activity (100 %) toward 15 mg L−1 of DMP within 30 min when subjected to light and ultrasonic irradiations simultaneously. Radical quenching experiments and visual spectrophotometry using an O-phenylenediamine revealed the crucial role of hydroxyl radicals compared to holes and superoxide radicals. Overall, outcomes disclosed that CuCr LDH/rGO is a stable and proper sonophotocatalyst for environmental remediation.  相似文献   

11.
Tungsten oxide nanoparticles were fabricated by a pulsed laser ablation method in deionized water using the first harmonic of a Nd:YAG laser (λ=1064 nm) at three different laser pulse energies (E1 =160, E2 =370 and E3 =500 mJ/pulse), respectively. The aim is to investigate the effect of laser pulse energy on the size distribution and gasochromic property of colloidal nanoparticles. The products were characterized by dynamic light scattering (DLS), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and UV-Vis spectroscopy. The results indicated that WO3 nanoparticles were formed. After ablation, a 0.2 g/l PdCl2 solution was added to activate the solution against hydrogen gas. In this process Pd2+ ions were reduced to deposit fine metallic Pd particles on the surface of tungsten oxide nanoparticles. The gasochromic response was measured by H2 and O2 gases bubbling into the produced colloidal Pd–WO3. The results indicate that the number of unreduced ions (Pd2+) decreases with increasing laser pulse energy; therefore, for colloidal nanoparticles synthesized at the highest laser pulse energy approximately all Pd2+ ions have been reduced. Hence, the gasochromic response for this sample is nearly reversible in all cycles, whereas those due to other samples are not reversible in the first cycle.  相似文献   

12.
Binary Au-Pd nanoparticles were synthesized by ultrasonic irradiation of solutions containing Au3+ and Pd2+ ions (the ion ratio from 0.3:0.7 to 0.9:0.1 mM) and cationic surfactant (SDS: sodium dodecyl sulfate). In each case the core-shell structure (Au core, Pd shell) was confirmed by scanning transmission electron microscopy (STEM). The mean diameters of them were all about 9 nm, and the thickness of the Pd shell depends on the ratio of Pd2+ and Au3+ ions in solution. In order to study the electronic states of core-shell nanoparticles and their dependence on shell thickness, Doppler broadening measurements were performed for Au-Pd core-shell nanoparticles by using slow positron beam technique. The ratio curves of Au-Pd particles did not match with those of pure Pd and pure Au, but a small difference in the low electron momentum region was observed among nanoparticles depending on Pd shell thickness.  相似文献   

13.
A system Pd (deposit)-Si (substrate) has been studied by LEED and AES. Pd2Si formed on Si(111) became epitaxial after a short time of annealing at a temperature between 300 and 700°C, while the Pd2Si formed on Si(100) did not, in both cases the surfaces of the Pd2Si being covered with a very thin Si layer. A sequence of superstructures (3√3 × 3√3), (1 × 1), and (2√3 × 2√3) was observed successively in Pd/Si(111) as the annealing temperature was increased. A (√3 × √3) structure was obtained by sputtering the 3√3 surface slightly. It was found that the √3 structure corresponds to Pd2Si(0001)-(1 × 1) grown epitaxially on Si(111), and that the 3√3 structure comes from the thin Si layer accumulated over the silicide surface, while the 2√3 and 1 structures arise from a submonolayer of Pd adsorbed on Si(111). Superstructures observed on a Pd/Si(100) system are also studied.  相似文献   

14.
The effects of polyethers (polyethylene glycol-block-polypropylene glycol-block-polyethylene glycol copolymer (PEG-PPG-PEG) and polyethylene glycol (PEG)) on the chitosan (CS)-Pd (II) gel beads catalysts prepared by a co-precipitation method have been studied. The blending of the polyethers led to an acceleration effect of the sol–gel transition. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) results showed that most of the blended polyethers component was efficiently, selectively, dissolved by water, but, unexpectedly, no pore structure was obtained. It was found that the blending of the polyethers can promote better phase dispersion of the Pd species in the CS matrix. The extracted CS/PEG-PPG-PEG/Pd gel beads catalysts had higher catalytic performance than extracted CS/PEG/Pd or CS/Pd gel beads catalysts alone due to its better phase dispersion of Pd0 species and stronger intermolecular interactions.  相似文献   

15.
本工作利用透射电子显微术研究了Pd-Si薄膜固相反应的初始生成相及生成相Pd2Si与(111)取向Si衬底的取向关系随Pd膜厚度、退火温度等因素的变化规律。实验结果表明:在衬底保持室温的条件下,Pd沉积到Si(111)上时也能够生成一层外延的Pd2Si,其厚度足以在常规的选区电子衍射中产生明显的信号。在170℃退火时,Pd-Si反应即可持续到生成200nm厚的外延的Pd2Si。在Pd膜厚度为400nm的条件下,Pd2Si与Si(111)衬底的取向关系为[0001](Pd2Si)轴织构。 关键词:  相似文献   

16.
Pd nanoparticles highly dispersed onto the surface of ordered mesoporous carbons (OMCs) were synthesized successfully by poly(sodium-p-styrenesulfonate) (PSS) assisted microwave synthesis. Here, PSS served as a bifunctional molecule both for solubilizing and dispersing OMCs into aqueous solution and for jointing Pd2+ to facilitate the subsequent uniform formation of Pd nanoparticles on their surfaces. The effects of PSS on structural and electrochemical properties of Pd/OMCs were investigated. It was found that the addition of PSS facilitated Pd nanoparticles to disperse on the carbon surface. Electrochemical properties showed that Pd catalysts prepared with addition of PSS displayed better electrochemical activity and stability for formic acid electro-oxidation than those without PSS.  相似文献   

17.
A series of AlMCM-41 molecular sieves was prepared with constant composition (Si/Al = 14.7) and presumably same pore structure but different pore diameters (from 2.3 to 4.6 nm). The pore size distribution is narrow for each sample. The rotational fluctuations of water molecules confined inside the pores were investigated applying broadband dielectric spectroscopy (10−2–107 Hz) over a large temperature interval (213–333K). A relaxation process, slower than that expected for bulk water, was observed which is assigned to water molecules forming a surface layer on the pore walls. The estimated relaxation time has an unusual non-monotonic temperature dependence, which is rationalized and modeled assuming two competing processes: rotational fluctuations of constrained water molecules and defect formation (Ryabov model). This paper focuses on the defects and notably the influence of the hydroxyl groups of the pore walls. The Ryabov model is fitted to the data and characteristic parameters are obtained. Their dependence on pore diameter is considered for the first time. The found results are compared with those obtained for other types of molecular sieves and related materials.  相似文献   

18.
Theoretical calculations focused on the geometry, stability, electronic and magnetic properties of small palladium clusters Pdn (n=1–5) adsorbed on the NiAl(1 1 0) alloy surface were carried out within the framework of density functional theory (DFT). In agreement with the experimental observations, both Ni-bridge and Al-bridge sites are preferential for the adsorption of single palladium atom, with an adsorption energy difference of 0.04 eV. Among the possible structures considered for Pdn (n=1–5) clusters adsorbed on NiAl(1 1 0) surface, Pd atoms tend to form one-dimensional (1D) chain structure at low coverage (from Pd1 to Pd3) and two-dimensional (2D) structures are more stable than three-dimensional (3D) structures for Pd4 and Pd5. Furthermore, metal-substrate bonding prevails over metal–metal bonding for Pd cluster adsorbed on NiAl(1 1 0) surface. The density of states for Pd atoms of Pd/NiAl(1 1 0) system are strongly affected by their chemical environment. The magnetic feature emerged upon the adsorption of Pd clusters on NiAl(1 1 0) surface was due to the charge transfer between Pd atoms and the substrate. These findings may shade light on the understanding of the growth of Pd metal clusters on alloy surface and the construction of nanoscale devices.  相似文献   

19.
Temperature programmed desorption (TPD) of CO and O2 on PdAu alloy wires has been studied. The heat of adsorption, sticking coefficient and maximum coverage of CO were recorded for Pd, 83 Pd 17 Au, 60 Pd 40 Au. For Pd and Pd-rich alloys the heat of adsorption remained fairly constant but the maximum coverage fell markedly from 0.42 for Pd to less than 0.05 for bulk palladium atom fraction XBpd ? 0.83. The heat of adsorption, sticking coefficient and maximum coverage of O2 were investigated for pure Pd. A very limited adsorption was recorded on 83 Pd 17 Au and none on the more Au-rich alloys. The adsorption data are used to discuss the CO + O2 reaction. Activation energy and frequency factor are estimated on Pd, for the TPD conditions used here. Earlier rate constants (0.2 Torr, 150°C) for CO + O2 on PdAu as a function of Au content correlates with the maximum coverage of chemisorbed CO, which in turn is correlated with the probability of finding a Pd9±1 ensemble in the surface. Modern results on the d-band structure of the PdAu alloys suggest that the Pd9 ensemble, i.e. a surface Pd atom without an Au atom in its coordination shell, would tend to optimise both the donor and acceptor actions of the Pd atoms involved in chemisorbing CO.  相似文献   

20.
Effect of Pd deposition on a clean Si(111) surface was studied by ELS and AES methods for submonolayer [1 ML = 7.8 × 1014atomscm-2forSi(111)] to several tens of monolayers. ELS spectra showed that the electronic nature of Pd-Si bonding for ? 1 ML of Pd coverage is different from Pd2Si formed for ? 3 ML. Namely, it was shown that some critical thickness for Pd on Si(111) exist for inducing interfacial intermixing reaction at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号