首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper discusses discrete-time single server Geo/G/1 queues that are subject to failure due to a disaster arrival. Upon a disaster arrival, all present customers leave the system. At a failure epoch, the server is turned off and the repair period immediately begins. The repair times are commonly distributed random variables. We derive the probability generating functions of the queue length distribution and the FCFS sojourn time distribution. Finally, some numerical examples are given.  相似文献   

2.
Qi-Ming He 《Queueing Systems》2005,49(3-4):363-403
In this paper, we study a discrete time queueing system with multiple types of customers and a first-come-first-served (FCFS) service discipline. Customers arrive according to a semi-Markov arrival process and the service times of individual customers have PH-distributions. A GI/M/1 type Markov chain for a generalized age process of batches of customers is introduced. The steady state distribution of the GI/M/1 type Markov chain is found explicitly and, consequently, the steady state distributions of the age of the batch in service, the total workload in the system, waiting times, and sojourn times of different batches and different types of customers are obtained. We show that the generalized age process and a generalized total workload process have the same steady state distribution. We prove that the waiting times and sojourn times have PH-distributions and find matrix representations of those PH-distributions. When the arrival process is a Markov arrival process with marked transitions, we construct a QBD process for the age process and the total workload process. The steady state distributions of the waiting times and the sojourn times, both at the batch level and the customer level, are obtained from the steady state distribution of the QBD process. A number of numerical examples are presented to gain insight into the waiting processes of different types of customers.AMS subject classification: 60K25, 60J10This revised version was published online in June 2005 with corrected coverdate  相似文献   

3.
以多语种便民服务热线为实际应用背景,研究个性化服务M/G_N/1排队系统中顾客逗留时间分布函数的数值计算方法.首先,利用嵌入Markov链技术和Pollaczek-Khintchine变换公式给出顾客逗留时间的Laplace-Stieltjes(LS)变换.其次,根据个性化服务时间分布函数的具体类型,给出上述LS变换的有理函数表达形式.通过求解有理函数分母之具有负实部的零点,即所谓的特征根,最终使用部分分式分解方法和复分析中的留数理论给出顾客逗留时间的概率分布函数.  相似文献   

4.
讨论M/T-SPH/1排队平稳队长分布的数值计算,以及平稳队长和逗留时间分布各阶矩的数值计算及渐近分析.其中T-SPH表示可数状态吸收生灭链吸收时间的分布.在分布PGF和LST的基础上,首先给出了计算平稳队长分布,平稳队长以及逗留时间分布各阶矩的数值结果的递推公式.其次还讨论了平稳队长及平稳逗留时间分布各阶矩的尾部渐近特征.结果表明当参数取不同值时,两个指标尾部具有三种不同类型的衰减方式.最后还用数值例子检验了方法的有效性.  相似文献   

5.
We consider a queueing system with a single server having a mixture of a semi-Markov process (SMP) and a Poisson process as the arrival process, where each SMP arrival contains a batch of customers. The service times are exponentially distributed. We derive the distributions of the queue length of both SMP and Poisson customers when the sojourn time distributions of the SMP have rational Laplace–Stieltjes transforms. We prove that the number of unknown constants contained in the generating function for the queue length distribution equals the number of zeros of the denominator of this generating function in the case where the sojourn times of the SMP follow exponential distributions. The linear independence of the equations generated by those zeros is discussed for the same case with additional assumption. The necessary and sufficient condition for the stability of the system is also analyzed. The distributions of the waiting times of both SMP and Poisson customers are derived. The results are applied to the case in which the SMP arrivals correspond to the exact sequence of Motion Picture Experts Group (MPEG) frames. Poisson arrivals are regarded as interfering traffic. In the numerical examples, the mean and variance of the waiting time of the ATM cells generated from the MPEG frames of real video data are evaluated.  相似文献   

6.
We consider a general QBD process as defining a FIFO queue and obtain the stationary distribution of the sojourn time of a customer in that queue as a matrix exponential distribution, which is identical to a phase-type distribution under a certain condition. Since QBD processes include many queueing models where the arrival and service process are dependent, these results form a substantial generalization of analogous results reported in the literature for queues such as the PH/PH/c queue. We also discuss asymptotic properties of the sojourn time distribution through its matrix exponential form.  相似文献   

7.
In this paper, we consider a new class of the GI/M/1 queue with single working vacation and vacations. When the system become empty at the end of each regular service period, the server first enters a working vacation during which the server continues to serve the possible arriving customers with a slower rate, after that, the server may resume to the regular service rate if there are customers left in the system, or enter a vacation during which the server stops the service completely if the system is empty. Using matrix geometric solution method, we derive the stationary distribution of the system size at arrival epochs. The stochastic decompositions of system size and conditional system size given that the server is in the regular service period are also obtained. Moreover, using the method of semi-Markov process (SMP), we gain the stationary distribution of system size at arbitrary epochs. We acquire the waiting time and sojourn time of an arbitrary customer by the first-passage time analysis. Furthermore, we analyze the busy period by the theory of limiting theorem of alternative renewal process. Finally, some numerical results are presented.  相似文献   

8.
We consider an M/G/1-type, two-phase queueing system, in which the two phases in series are attended alternatively and exhaustively by a moving single-server according to a batch-service in the first phase and an individual service in the second phase. We show that the two-phase queueing system reduces to a new type of single-vacation model with non-exhaustive service. Using a double transform for the joint distribution of the queue length in each phase and the remaining service time, we derive Laplace-Stieltjes transforms for the sojourn time in each phase and the total sojourn time in the system. Furthermore, we provide the moment formula of sojourn times and numerical examples of an approximate density function of the total sojourn time.  相似文献   

9.
A multi-server queueing system with a Markovian arrival process and finite and infinite buffers to model a call center with a call-back option is investigated. If all servers are busy during the customer arrival epoch, the customer may leave the system forever or move to the buffer (such a customer is referred to as a real customer), or, alternatively, request for call-back (such a customer is referred to as a virtual customer). During a waiting period, a real customer can be impatient and may leave the system without service or request for call-back (becomes a virtual customer). The service time of a customer and the dial time to a virtual customer for a server have a phase-type distribution. To simplify the investigation of the system we introduce the notion of a generalized phase-type service time distribution. We determine the stationary distribution of the system states and derive the Laplace–Stieltjes transforms of the sojourn and waiting time distributions for real and virtual customers. Some key performance measures are calculated and numerical results are presented.  相似文献   

10.
We give in this paper an algorithm to compute the sojourn time distribution in the processor sharing, single server queue with Poisson arrivals and phase type distributed service times. In a first step, we establish the differential system governing the conditional sojourn times probability distributions in this queue, given the number of customers in the different phases of the PH distribution at the arrival instant of a customer. This differential system is then solved by using a uniformization procedure and an exponential of matrix. The proposed algorithm precisely consists of computing this exponential with a controlled accuracy. This algorithm is then used in practical cases to investigate the impact of the variability of service times on sojourn times and the validity of the so-called reduced service rate (RSR) approximation, when service times in the different phases are highly dissymmetrical. For two-stage PH distributions, we give conjectures on the limiting behavior in terms of an M/M/1 PS queue and provide numerical illustrative examples.This revised version was published online in June 2005 with corrected coverdate  相似文献   

11.
Consider a number of parallel queues, each with an arbitrary capacity and multiple identical exponential servers. The service discipline in each queue is first-come-first-served (FCFS). Customers arrive according to a state-dependent Poisson process. Upon arrival, a customer joins a queue according to a state-dependent policy or leaves the system immediately if it is full. No jockeying among queues is allowed. An incoming customer to a parallel queue has a general patience time dependent on that queue after which he/she must depart from the system immediately. Parallel queues are of two types: type 1, wherein the impatience mechanism acts on the waiting time; or type 2, a single server queue wherein the impatience acts on the sojourn time. We prove a key result, namely, that the state process of the system in the long run converges in distribution to a well-defined Markov process. Closed-form solutions for the probability density function of the virtual waiting time of a queue of type 1 or the offered sojourn time of a queue of type 2 in a given state are derived which are, interestingly, found to depend only on the local state of the queue. The efficacy of the approach is illustrated by some numerical examples.  相似文献   

12.
We analyze the Two Level Processor Sharing (TLPS) scheduling discipline with the hyper-exponential job size distribution and with the Poisson arrival process. TLPS is a convenient model to study the benefit of the file size based differentiation in TCP/IP networks. In the case of the hyper-exponential job size distribution with two phases, we find a closed form analytic expression for the expected sojourn time and an approximation for the optimal value of the threshold that minimizes the expected sojourn time. In the case of the hyper-exponential job size distribution with more than two phases, we derive a tight upper bound for the expected sojourn time conditioned on the job size. We show that when the variance of the job size distribution increases, the gain in system performance increases and the sensitivity to the choice of the threshold near its optimal value decreases. The work was supported by France Telecom R&D Grant “Modélisation et Gestion du Trafic Réseaux Internet” no. 46129414.  相似文献   

13.
Consider a tandem queue consisting of two single-server queues in series, with a Poisson arrival process at the first queue and arbitrarily distributed service times, which for any customer are identical in both queues. For this tandem queue, we relate the tail behaviour of the sojourn time distribution and the workload distribution at the second queue to that of the (residual) service time distribution. As a by-result, we prove that both the sojourn time distribution and the workload distribution at the second queue are regularly varying at infinity of index 1−ν, if the service time distribution is regularly varying at infinity of index −ν (ν>1). Furthermore, in the latter case we derive a heavy-traffic limit theorem for the sojourn time S (2) at the second queue when the traffic load ρ↑ 1. It states that, for a particular contraction factor Δ (ρ), the contracted sojourn time Δ (ρ) S (2) converges in distribution to the limit distribution H(·) as ρ↑ 1 where .  相似文献   

14.
The solutions of various problems in the theories of queuing processes, branching processes, random graphs and others require the determination of the distribution of the sojourn time (occupation time) for the Brownian excursion. However, no standard method is available to solve this problem. In this paper we approximate the Brownian excursion by a suitably chosen random walk process and determine the moments of the sojourn time explicitly. By using a limiting approach, we obtain the corresponding moments for the Brownian excursion. The moments uniquely determine the distribution, enabling us to derive an explicit formula.  相似文献   

15.
张宏波  史定华 《数学学报》2017,60(5):713-720
讨论M/T-SPH/1排队平稳队长分布和平稳逗留时间分布的尾部衰减特征,其中T-SPH表示可数状态吸收生灭过程吸收时间的分布。在分布PGF和LST的基础上,给出了两个平稳分布衰减规律的完整分析.结果表明,当参数取不同值时,平稳队长与平稳逗留时间的尾部具有三种不同类型的衰减特征.  相似文献   

16.
The arrival of a negative customer to a queueing system causes one positive customer to be removed if any is present. Continuous-time queues with negative and positive customers have been thoroughly investigated over the last two decades. On the other hand, a discrete-time Geo/Geo/1 queue with negative and positive customers appeared only recently in the literature. We extend this Geo/Geo/1 queue to a corresponding GI/Geo/1 queue. We present both the stationary queue length distribution and the sojourn time distribution.  相似文献   

17.
In this paper, we are concerned with the analytical treatment of an GI/M/1 retrial queue with constant retrial rate. Constant retrial rate is typical for some real world systems where the intensity of individual retrials is inversely proportional to the number of customers in the orbit or only one customer from the orbit is allowed to make the retrials. In our model, a customer who finds the server busy joins the queue in the orbit in accordance with the FCFS (first-come-first-out) discipline and only the oldest customer in the queue is allowed to make the repeated attempts to reach the server. A distinguishing feature of the considered system is an arbitrary distribution of inter-arrival times, while the overwhelming majority of the papers is devoted to the retrial systems with the stationary Poisson arrival process. We carry out an extensive analytical analysis of the queue in steady state using the well-known matrix analytic technique. The ergodicity condition and simple expressions for the stationary distributions of the system states at pre-arrival, post-arrival and arbitrary times are derived. The important and difficult problem of finding the stationary distribution of the sojourn time is solved in terms of the Laplace–Stieltjes transform. Little’s formula is proved. Numerical illustrations are presented.  相似文献   

18.
Zwart  A.P.  Boxma  O.J. 《Queueing Systems》2000,35(1-4):141-166
We show for the M/G/1 processor sharing queue that the service time distribution is regularly varying of index -ν, ν non-integer, iff the sojourn time distribution is regularly varying of index -ν. This result is derived from a new expression for the Laplace–Stieltjes transform of the sojourn time distribution. That expression also leads to other new properties for the sojourn time distribution. We show how the moments of the sojourn time can be calculated recursively and prove that the kth moment of the sojourn time is finite iff the kth moment of the service time is finite. In addition, we give a short proof of a heavy traffic theorem for the sojourn time distribution, prove a heavy traffic theorem for the moments of the sojourn time, and study the properties of the heavy traffic limiting sojourn time distribution when the service time distribution is regularly varying. Explicit formulas and multiterm expansions are provided for the case that the service time has a Pareto distribution. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Takine  Tetsuya 《Queueing Systems》2001,37(1-3):31-63
This paper considers stationary queues with multiple arrival streams governed by an irreducible Markov chain. In a very general setting, we first show an invariance relationship between the time-average joint queue length distribution and the customer-average joint queue length distribution at departures. Based on this invariance relationship, we provide a distributional form of Little's law for FIFO queues with simple arrivals (i.e., the superposed arrival process has the orderliness property). Note that this law relates the time-average joint queue length distribution with the stationary sojourn time distributions of customers from respective arrival streams. As an application of the law, we consider two variants of FIFO queues with vacations, where the service time distribution of customers from each arrival stream is assumed to be general and service time distributions of customers may be different for different arrival streams. For each queue, the stationary waiting time distribution of customers from each arrival stream is first examined, and then applying the Little's law, we obtain an equation which the probability generating function of the joint queue length distribution satisfies. Further, based on this equation, we provide a way to construct a numerically feasible recursion to compute the joint queue length distribution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号