首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Summary In this paper the Vehicle Routing-Allocation Problem (VRAP) is presented. In VRAP not all customers need be visited by the vehicles. However customers not visited either have to be allocated to some customer on one of the vehicle tours or left isolated. We concentrate our discussion on the Single Vehicle Routing-Allocation Problem (SVRAP). An integer linear programming formulation of SVRAP is presented and we show how SVRAP provides a unifying framework for understanding a number of the papers and problems presented in the literature. Specifically the covering tour problem, the covering salesman problem, the median tour problem, the maximal covering tour problem, the travelling salesman problem, the generalised travelling salesman problem, the selective travelling salesman problem, the prize collecting travelling salesman problem, the maximum covering/shortest path problem, the maximum population/shortest path problem, the shortest covering path problem, the median shortest path problem, the minimum covering/shortest path problem and the hierarchical network design problem are special cases/variants of SVRAP.  相似文献   

2.
In this paper, we consider a periodic vehicle routing problem that includes, in addition to the classical constraints, the possibility of a vehicle doing more than one route per day, as long as the maximum daily operation time for the vehicle is not exceeded. In addition, some constraints relating to accessibility of the vehicles to the customers, in the sense that not every vehicle can visit every customer, must be observed. We refer to the problem we consider here as the site-dependent multi-trip periodic vehicle routing problem. An algorithm based on tabu search is presented for the problem and computational results presented on randomly generated test problems that are made publicly available. Our algorithm is also tested on a number of routing problems from the literature that constitute particular cases of the proposed problem. Specifically we consider the periodic vehicle routing problem; the site-dependent vehicle routing problem; the multi-trip vehicle routing problem; and the classical vehicle routing problem. Computational results for our tabu search algorithm on test problems taken from the literature for all of these problems are presented.  相似文献   

3.
The vehicle routing problem (VRP) under capacity and distance restrictions involves the design of a set of minimum cost delivery routes, originating and terminating at a central depot, which services a set of customers. Each customer must be supplied exactly once by one vehicle route. The total demand of any vehicle must not exceed the vehicle capacity. The total length of any route must not exceed a pre-specified bound. Approximate methods based on descent, hybrid simulated annealing/tabu search, and tabu search algorithms are developed and different search strategies are investigated. A special data structure for the tabu search algorithm is implemented which has reduced notably the computational time by more than 50%. An estimate for the tabu list size is statistically derived. Computational results are reported on a sample of seventeen bench-mark test problems from the literature and nine randomly generated problems. The new methods improve significantly both the number of vehicles used and the total distances travelled on all results reported in the literature.  相似文献   

4.
The vehicle fleet mix problem is a special case of the vehicle routing problem where customers are served by a heterogeneous fleet of vehicles with various capacities. An efficient heuristic for determining the composition of a vehicle fleet and travelling routes was developed using tabu search and by solving set partitioning problems. Two kinds of problems have appeared in the literature, concerning fixed cost and variable cost, and these were tested for evaluation. Initial solutions were found using the modified sweeping method. Whenever a new solution in an iteration of the tabu search was obtained, optimal vehicle allocation was performed for the set of routes, which are constructed from the current solution by making a giant tour. Experiments were performed for the benchmark problems that appeared in the literature and new best-known solutions were found.  相似文献   

5.
In this paper, we consider a variant of the open vehicle routing problem in which vehicles depart from the depot, visit a set of customers, and end their routes at special nodes called driver nodes. A driver node can be the home of the driver or a parking lot where the vehicle will stay overnight. The resulting problem is referred to as the open vehicle routing problem with driver nodes (OVRP-d). We consider three classes of OVRP-d: with no time constraints, with a maximum route duration, and with both a maximum route duration as well as time deadlines for visiting customers. For the solution of these problems, which are not addressed previously in the literature, we develop a new tabu search heuristic. Computational results on randomly generated instances indicate that the new heuristic exhibits a good performance both in terms of the solution quality and computation time.  相似文献   

6.
根据第三方库存-路线问题的特点,以车辆租赁费用和运行费用之和为目标函数,不限制客户每次的配送量小于车辆容量,建立了满载运输和非满载运输混合的整数规划模型.针对第三方库存-路线问题的复杂性,本文设计嵌入禁忌搜索的遗传算法来同时决策库存和路线问题.首先对配送间隔进行编码,然后用禁忌搜索法计算每天需要配送的车辆路线问题.最后与其下界值进行比较,结果表明该算法是一个有效的算法,不但第三方能取得较低的运营总成本和较高的车辆利用率,而且也能为客户节约库存空间.  相似文献   

7.
Path relinking for the vehicle routing problem   总被引:3,自引:0,他引:3  
This paper describes a tabu search heuristic with path relinking for the vehicle routing problem. Tabu search is a local search method that explores the solution space more thoroughly than other local search based methods by overcoming local optima. Path relinking is a method to integrate intensification and diversification in the search. It explores paths that connect previously found elite solutions. Computational results show that tabu search with path relinking is superior to pure tabu search on the vehicle routing problem.  相似文献   

8.
Most of the research on integrated inventory and routing problems ignores the case when products are perishable. However, considering the integrated problem with perishable goods is crucial since any discrepancy between the routing and inventory cost can double down the risk of higher obsolescence costs due to the limited shelf-life of the products. In this paper, we consider a distribution problem involving a depot, a set of customers and a homogeneous fleet of capacitated vehicles. Perishable goods are transported from the depot to customers in such a way that out-of-stock situations never occur. The objective is to simultaneously determine the inventory and routing decisions over a given time horizon such that total transportation cost is minimized. We present a new “arc-based formulation” for the problem which is deemed more suitable for our new tabu search based approach for solving the problem. We perform a thorough sensitivity analysis for each of the tabu search parameters individually and use the obtained gaps to fine-tune the parameter values that are used in solving larger sized instances of the problem. We solve different sizes of randomly generated instances and compare the results obtained using the tabu search algorithm to those obtained by solving the problem using CPLEX and a recently published column generation algorithm. Our computational experiments demonstrate that the tabu search algorithm is capable of obtaining a near-optimal solution in less computational time than the time required to solve the problem to optimality using CPLEX, and outperforms the column generation algorithm for solving the “path flow formulation” of the problem in terms of solution quality in almost all of the considered instances.  相似文献   

9.
The fleet size and mix vehicle routing problem consists of defining the type, the number of vehicles of each type, as well as the order in which to serve the customers with each vehicle when a company has to distribute goods to a set of customers geographically spread, with the objective of minimizing the total costs. In this paper, a heuristic algorithm based on tabu search is proposed and tested on several benchmark instances. The computational results show that the proposed algorithm produces high quality results within a reasonable computing time. Some new best solutions are reported for a set of test problems used in the literature.  相似文献   

10.
In the distribution of goods from a central depot to geographically dispersed customers happens quite frequently that some customers, called linehauls, receive goods from that depot while others, named backhauls, send goods to it. This situation is described and studied by the vehicle routing problem with backhauls. In this paper we present a new tabu search algorithm that starting from pseudo-lower bounds was able to match almost all the best published solutions and to find many new best solutions, for a large set of benchmark problems.  相似文献   

11.
In this paper, another version of the vehicle routing problem (VRP)—the open vehicle routing problem (OVRP) is studied, in which the vehicles are not required to return to the depot, but if they do, it must be by revisiting the customers assigned to them in the reverse order. By exploiting the special structure of this type of problem, we present a new tabu search heuristic for finding the routes that minimize two objectives while satisfying three constraints. The computational results are provided and compared with two other methods in the literature.  相似文献   

12.
The vehicle routing problem with multiple use of vehicles is a variant of the classical vehicle routing problem. It arises when each vehicle performs several routes during the workday due to strict time limits on route duration (e.g., when perishable goods are transported). The routes are defined over customers with a revenue, a demand and a time window. Given a fixed-size fleet of vehicles, it might not be possible to serve all customers. Thus, the customers must be chosen based on their associated revenue minus the traveling cost to reach them. We introduce a branch-and-price approach to address this problem where lower bounds are computed by solving the linear programming relaxation of a set packing formulation, using column generation. The pricing subproblems are elementary shortest path problems with resource constraints. Computational results are reported on euclidean problems derived from well-known benchmark instances for the vehicle routing problem with time windows.  相似文献   

13.
一种部分约束满足车辆路线问题及其求解算法   总被引:1,自引:0,他引:1  
描述了一类过度约束车辆路线问题,其中可用车辆数较少而时间窗口等其它约束又不允许放松,因而导致不存在满足所有约束的可行解。此时问题求解可以转化为一类部分约束满足问题来处理,相应的优化目标是最小化未访问顾客的损失和。本给出了求解这类特殊问题的一种禁忌搜索算法设计,并通过规模不同的几个算例与其它常用方法进行了比较。最后分析了模型和算法的实用意义。  相似文献   

14.
In this paper we use a scatter search framework to solve the vehicle routing problem with time windows (VRPTW). Our objective is to achieve effective solutions and to investigate the effects of reference set design parameters pertaining to size, quality and diversity. Both a common arc method and an optimization-based set covering model are used to combine vehicle routing solutions. A reactive tabu search metaheuristic and a tabu search with an advanced recovery feature, together with a set covering procedure are used for solution improvement. Our approach led to a robust solution method, generating solution quality that is competitive with the current best metaheuristics.  相似文献   

15.
This paper describes an incremental neighbourhood tabu search heuristic for the generalized vehicle routing problem with time windows. The purpose of this work is to offer a general tool that can be successfully applied to a wide variety of specific problems. The algorithm builds upon a previously developed tabu search heuristic by replacing its neighbourhood structure. The new neighbourhood is exponential in size, but the proposed evaluation procedure has polynomial complexity. Computational results are presented and demonstrate the effectiveness of the approach.  相似文献   

16.
This paper deals with a recently introduced routing problem variant called the undirected capacitated arc routing problem with profits (UCARPP). The UCARPP model considered in the present study is primarily aimed at generating the route set which maximizes the profit collected from a set of potential customers, represented by edges of the examined transportation network. The secondary objective is to minimize the total route travel time. The generated routes are subject both to capacity and travel time constraints. To tackle the examined problem, we propose a local search metaheuristic development which explores two solution neighborhood structures. The conducted search is effectively diversified by means of the promises concept which is based on the aspiration criteria used in tabu search approaches. The proposed algorithm was tested on UCARPP benchmark instances taken from the literature. It efficiently produced high-quality results, improving several previously best known solutions.  相似文献   

17.
The single vehicle routing problem with pickups and deliveries (SVRPPD) is defined on a graph in which pickup and delivery demands are associated with the customer vertices. The problem consists of designing a least cost route for a vehicle of capacity Q. Each customer is allowed to be visited once for a combined pickup and delivery, or twice if these two operations are performed separately. This article proposes a mixed integer linear programming model for the SVRPPD. It introduces the concept of general solution which encompasses known solution shapes such as Hamiltonian, double-path and lasso. Classical construction and improvement heuristics, as well as a tabu search heuristic, are developed and tested over several instances. Computational results show that the best solutions generated by the heuristics are frequently non-Hamiltonian and may contain up to two customers visited twice.  相似文献   

18.
In the partial accessibility constrained vehicle routing problem, a route can be covered by two types of vehicles, i.e. truck or truck + trailer. Some customers are accessible by both vehicle types, whereas others solely by trucks. After introducing an integer programming formulation for the problem, we describe a two-phase heuristic method which extends a classical vehicle routing algorithm. Since it is necessary to solve a combinatorial problem that has some similarities with the generalized assignment problem, we propose an enumerative procedure in which bounds are obtained from a Lagrangian relaxation. The routine provides very encouraging results on a set of test problems.  相似文献   

19.
The classical vehicle routing problem (VRP) involves determining a fleet of homogeneous size vehicles and designing an associated set of routes that minimizes the total cost. Our tabu search (TS) algorithm to solve the VRP is based on reactive tabu search (RTS) with a new escape mechanism, which manipulates different neighbourhood schemes in a very sophisticated way in order to get a balanced intensification and diversification continuously during the search process. We compare our algorithm with the best methods in the literature using different data sets and report results including new best known solutions for several well-known benchmark problems.  相似文献   

20.
This note introduces a refinement to a previously proposed tabu search algorithm for vehicle routing problems with time windows. This refinement yields new best known solutions on a set of benchmark instances of the multi-depot, the periodic and the site-dependent vehicle routing problems with time windows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号