首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For a connected graph G=(V,E), an edge set SE is a 3-restricted edge cut if GS is disconnected and every component of GS has order at least three. The cardinality of a minimum 3-restricted edge cut of G is the 3-restricted edge connectivity of G, denoted by λ3(G). A graph G is called minimally 3-restricted edge connected if λ3(Ge)<λ3(G) for each edge eE. A graph G is λ3-optimal if λ3(G)=ξ3(G), where , ω(U) is the number of edges between U and V?U, and G[U] is the subgraph of G induced by vertex set U. We show in this paper that a minimally 3-restricted edge connected graph is always λ3-optimal except the 3-cube.  相似文献   

2.
Let k be a positive integer and G be a connected graph. This paper considers the relations among four graph theoretical parameters: the k-domination number γk(G), the connected k-domination number ; the k-independent domination number and the k-irredundance number irk(G). The authors prove that if an irk-set X is a k-independent set of G, then , and that for k?2, if irk(G)=1, if irk(G) is odd, and if irk(G) is even, which generalize some known results.  相似文献   

3.
Acyclic edge colouring of planar graphs without short cycles   总被引:1,自引:0,他引:1  
Let G=(V,E) be any finite graph. A mapping C:E→[k] is called an acyclic edgek-colouring of G, if any two adjacent edges have different colours and there are no bichromatic cycles in G. In other words, for every pair of distinct colours i and j, the subgraph induced in G by all the edges which have colour i or j, is acyclic. The smallest number k of colours, such that G has an acyclic edge k-colouring is called the acyclic chromatic index of G, denoted by .In 2001, Alon et al. conjectured that for any graph G it holds that ; here Δ(G) stands for the maximum degree of G.In this paper we prove this conjecture for planar graphs with girth at least 5 and for planar graphs not containing cycles of length 4,6,8 and 9. We also show that if G is planar with girth at least 6. Moreover, we find an upper bound for the acyclic chromatic index of planar graphs without cycles of length 4. Namely, we prove that if G is such a graph, then .  相似文献   

4.
5.
On edge domination numbers of graphs   总被引:1,自引:0,他引:1  
Let and be the signed edge domination number and signed star domination number of G, respectively. We prove that holds for all graphs G without isolated vertices, where n=|V(G)|?4 and m=|E(G)|, and pose some problems and conjectures.  相似文献   

6.
For a connected graph G=(V,E), an edge set SE is a k-restricted-edge-cut, if G-S is disconnected and every component of G-S has at least k vertices. The k-restricted-edge-connectivity of G, denoted by λk(G), is defined as the cardinality of a minimum k-restricted-edge-cut. The k-isoperimetric-edge-connectivity is defined as , where is the set of edges with one end in U and the other end in . In this note, we give some degree conditions for a graph to have optimal λk and/or γk.  相似文献   

7.
An edge of a 5-connected graph is said to be contractible if the contraction of the edge results in a 5-connected graph. A 5-connected graph with no contractible edge is said to be contraction critically 5-connected. Let G be a contraction critically 5-connected graph and let H be a component of the subgraph induced by the set of degree 5 vertices of G. Then it is known that |V(H)|≥4. We prove that if |V(H)|=4, then , where stands for the graph obtained from K4 by deleting one edge. Moreover, we show that either |NG(V(H))|=5 or |NG(V(H))|=6 and around H there is one of two specified structures called a -configuration and a split -configuration.  相似文献   

8.
Let G be a multigraph with edge set E(G). An edge coloring C of G is called an edge covered coloring, if each color appears at least once at each vertex vV(G). The maximum positive integer k such that G has a k edge covered coloring is called the edge covered chromatic index of G and is denoted by . A graph G is said to be of class if and otherwise of class. A pair of vertices {u,v} is said to be critical if . A graph G is said to be edge covered critical if it is of class and every edge with vertices in V(G) not belonging to E(G) is critical. Some properties about edge covered critical graphs are considered.  相似文献   

9.
Daqing Yang 《Discrete Mathematics》2009,309(13):4614-4623
Let be a directed graph. A transitive fraternal augmentation of is a directed graph with the same vertex set, including all the arcs of and such that for any vertices x,y,z,
1.
if and then or (fraternity);
2.
if and then (transitivity).
In this paper, we explore some generalization of the transitive fraternal augmentations for directed graphs and its applications. In particular, we show that the 2-coloring number col2(G)≤O(1(G)0(G)2), where k(G) (k≥0) denotes the greatest reduced average density with depth k of a graph G; we give a constructive proof that k(G) bounds the distance (k+1)-coloring number colk+1(G) with a function f(k(G)). On the other hand, k(G)≤(col2k+1(G))2k+1. We also show that an inductive generalization of transitive fraternal augmentations can be used to study nonrepetitive colorings of graphs.  相似文献   

10.
A set S of vertices of a graph G=(V,E) with no isolated vertex is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. The total domination numberγt(G) is the minimum cardinality of a total dominating set of G. The total domination subdivision numbersdγt(G) is the minimum number of edges that must be subdivided in order to increase the total domination number. We consider graphs of order n?4, minimum degree δ and maximum degree Δ. We prove that if each component of G and has order at least 3 and , then and if each component of G and has order at least 2 and at least one component of G and has order at least 3, then . We also give a result on stronger than a conjecture by Harary and Haynes.  相似文献   

11.
12.
An edge colouring of a graph G without isolated edges is neighbour-distinguishing if any two adjacent vertices have distinct sets consisting of colours of their incident edges. The general neighbour-distinguishing index of G is the minimum number of colours in a neighbour-distinguishing edge colouring of G. Gy?ri et al. [E. Gy?ri, M. Horňák, C. Palmer, M. Wo?niak, General neighbour-distinguishing index of a graph, Discrete Math. 308 (2008) 827-831] proved that provided G is bipartite and gave a complete characterisation of bipartite graphs according to their general neighbour-distinguishing index. The aim of this paper is to prove that if χ(G)≥3, then . Therefore, if log2χ(G)∉Z, then .  相似文献   

13.
For a graph G, its cubicity is the minimum dimension k such that G is representable as the intersection graph of (axis-parallel) cubes in k-dimensional space. (A k-dimensional cube is a Cartesian product R1×R2×?×Rk, where Ri is a closed interval of the form [ai,ai+1] on the real line.) Chandran et al. [L.S. Chandran, C. Mannino, G. Oriolo, On the cubicity of certain graphs, Information Processing Letters 94 (2005) 113-118] showed that for a d-dimensional hypercube Hd, . In this paper, we use the probabilistic method to show that . The parameter boxicity generalizes cubicity: the boxicity of a graph G is defined as the minimum dimension k such that G is representable as the intersection graph of axis-parallel boxes in k-dimensional space. Since for any graph G, our result implies that . The problem of determining a non-trivial lower bound for is left open.  相似文献   

14.
Let G be a multigraph with vertex set V(G). An edge coloring C of G is called an edge-cover-coloring if each color appears at least once at each vertex vV(G). The maximum positive integer k such that G has a k-edge-cover-coloring is called the edge cover chromatic index of G and is denoted by . It is well known that , where μ(v) is the multiplicity of v and δ(G) is the minimum degree of G. We improve this lower bound to δ(G)−1 when 2≤δ(G)≤5. Furthermore we show that this lower bound is best possible.  相似文献   

15.
The relationship ρL(G)≤ρ(G)≤γ(G) between the lower packing number ρL(G), the packing number ρ(G) and the domination number γ(G) of a graph G is well known. In this paper we establish best possible bounds on the ratios of the packing numbers of any (connected) graph to its six domination-related parameters (the lower and upper irredundance numbers ir and IR, the lower and upper independence numbers i and β, and the lower and upper domination numbers γ and Γ). In particular, best possible constants aθ, bθ, cθ and dθ are found for which the inequalities and hold for any connected graph G and all θ∈{ir,γ,i,β,Γ,IR}. From our work it follows, for example, that and for any connected graph G, and that these inequalities are best possible.  相似文献   

16.
We prove that for every graph H with the minimum degree δ?5, the third iterated line graph L3(H) of H contains as a minor. Using this fact we prove that if G is a connected graph distinct from a path, then there is a number kG such that for every i?kG the i-iterated line graph of G is -linked. Since the degree of Li(G) is even, the result is best possible.  相似文献   

17.
Let G be a graph and for any natural number r, denotes the minimum number of colors required for a proper edge coloring of G in which no two vertices with distance at most r are incident to edges colored with the same set of colors. In [Z. Zhang, L. Liu, J. Wang, Adjacent strong edge coloring of graphs, Appl. Math. Lett. 15 (2002) 623-626] it has been proved that for any tree T with at least three vertices, . Here we generalize this result and show that . Moreover, we show that if for any two vertices u and v with maximum degree d(u,v)?3, then . Also for any tree T with Δ(T)?3 we prove that . Finally, it is shown that for any graph G with no isolated edges, .  相似文献   

18.
Let be the signed edge domination number of G. In 2006, Xu conjectured that: for any 2-connected graph G of order n(n≥2), . In this article we show that this conjecture is not true. More precisely, we show that for any positive integer m, there exists an m-connected graph G such that . Also for every two natural numbers m and n, we determine , where Km,n is the complete bipartite graph with part sizes m and n.  相似文献   

19.
If G is a connected graph with vertex set V, then the eccentric connectivity index of G, ξC(G), is defined as where is the degree of a vertex v and is its eccentricity. We obtain an exact lower bound on ξC(G) in terms of order, and show that this bound is sharp. An asymptotically sharp upper bound is also derived. In addition, for trees of given order, when the diameter is also prescribed, precise upper and lower bounds are provided.  相似文献   

20.
Let G be a 4-connected graph, and let Ec(G) denote the set of 4-contractible edges of G and let denote the set of those edges of G which are not contained in a triangle. Under this notation, we show that if , then we have .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号