首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In this paper we consider the following elliptic system in \mathbbR3{\mathbb{R}^3}
$\qquad\left\{{ll}-\Delta u+u+\lambda K(x)\phi u=a(x)|u|^{p-1}u \quad &x \in {\mathbb{R}}^{3}\\ -\Delta \phi=K(x)u^{2} \quad &x \in {\mathbb{R}}^{3}\right.$\qquad\left\{\begin{array}{ll}-\Delta u+u+\lambda K(x)\phi u=a(x)|u|^{p-1}u \quad &x \in {\mathbb{R}}^{3}\\ -\Delta \phi=K(x)u^{2} \quad &x \in {\mathbb{R}}^{3}\end{array}\right.  相似文献   

2.
Let $1 0.$ This is in sharp contrast to D'Aprile and Mugnai's non-existence results.  相似文献   

3.
In this paper, the authors give the local L~2 estimate of the maximal operator S_(φ,γ)~* of the operator family {S_(t,φ,γ)} defined initially by ■which is the solution(when n = 1) of the following dispersive equations(~*) along a curve γ:■where φ : R~+→R satisfies some suitable conditions and φ((-?)~(1/2)) is a pseudo-differential operator with symbol φ(|ξ|). As a consequence of the above result, the authors give the pointwise convergence of the solution(when n = 1) of the equation(~*) along curve γ.Moreover, a global L~2 estimate of the maximal operator S_(φ,γ)~* is also given in this paper.  相似文献   

4.
This paper is concerned with the following Kirchhoff-type equations $$ \left\{ \begin{array}{ll} \displaystyle -\big(\varepsilon^{2}a+\varepsilon b\int_{\mathbb{R}^{3}}|\nabla u|^{2}\mathrm{d}x\big)\Delta u + V(x)u+\mu\phi |u|^{p-2}u=f(x,u), &\quad \mbox{ in }\mathbb{R}^{3},\(-\Delta)^{\frac{\alpha}{2}} \phi=\mu|u|^{p},~u>0, &\quad \mbox{ in }\mathbb{R}^{3},\\end{array} \right. $$ where $f(x,u)=\lambda K(x)|u|^{q-2}u+Q(x)|u|^{4}u$, $a>0,~b,~\mu\geq0$ are constants, $\alpha\in(0,3)$, $p\in[2,3),~q\in[2p,6)$ and $\varepsilon,~\lambda>0$ are parameters. Under some mild conditions on $V(x),~K(x)$ and $Q(x)$, we prove that the above system possesses a ground state solution $u_{\varepsilon}$ with exponential decay at infinity for $\lambda>0$ and $\varepsilon$ small enough. Furthermore, $u_{\varepsilon}$ concentrates around a global minimum point of $V(x)$ as $\varepsilon\rightarrow0$. The methods used here are based on minimax theorems and the concentration-compactness principle of Lions. Our results generalize and improve those in Liu and Guo (Z Angew Math Phys 66: 747-769, 2015), Zhao and Zhao (Nonlinear Anal 70: 2150-2164, 2009) and some other related literature.  相似文献   

5.
In this paper, we consider the following nonhomogeneous Schrodinger-Poisson equation $$ \left\{ - \Delta u +V(x)u+\phi(x)u =-k(x)|u|^{q-2}u+h(x)|u|^{p-2}u+g(x), &x\in \mathbb{R}^3,\\ \Delta \phi =u^2, \quad \lim_{|x|\rightarrow +\infty}\phi(x)=0, & x\in \mathbb{R}^3, \right. $$ where $1相似文献   

6.
We study the radially symmetric Schr?dinger equation
$ - \varepsilon ^{2} \Delta u + V{\left( {|x|} \right)}u = W{\left( {|x|} \right)}u^{p} ,\quad u > 0,\;\;u \in H^{1} ({\mathbb{R}}^{N} ), $ - \varepsilon ^{2} \Delta u + V{\left( {|x|} \right)}u = W{\left( {|x|} \right)}u^{p} ,\quad u > 0,\;\;u \in H^{1} ({\mathbb{R}}^{N} ),  相似文献   

7.
In this paper we study the nonlinear Klein-Gordon-Maxwell system $$\left \{\begin{array}{l@{\quad}l} -\Delta u+V(x)u-(2\omega+\phi)\phi u=f(x,u),&x\in{\mathbb{R}}^3,\\ \Delta \phi=(\omega+\phi)u^2,&x\in{\mathbb{R}}^3. \end{array} \right . $$ By means of a variant fountain theorem and the symmetric mountain pass theorem, we obtain the existence of infinitely many large energy solutions.  相似文献   

8.
In this work, we investigate the existence and the uniqueness of solutions for the nonlocal elliptic system involving a singular nonlinearity as follows: $$ \left\{\begin{array}{ll} (-\Delta_p)^su = a(x)|u|^{q-2}u +\frac{1-\alpha}{2-\alpha-\beta} c(x)|u|^{-\alpha}|v|^{1-\beta}, \quad \text{in }\Omega,\ (-\Delta_p)^s v= b(x)|v|^{q-2}v +\frac{1-\beta}{2-\alpha-\beta} c(x)|u|^{1-\alpha}|v|^{-\beta}, \quad \text{in }\Omega,\ u=v = 0 ,\;\;\mbox{ in }\,\mathbb{R}^N\setminus\Omega, \end{array} \right. $$ where $\Omega $ is a bounded domain in $\mathbb{R}^{n}$ with smooth boundary, $0<\alpha <1,$ $0<\beta <1,$ $2-\alpha -\beta 相似文献   

9.
In this paper using fountain theorems we study the existence of infinitely many solutions for fractional Schr\"{o}dinger-Maxwell equations \[\begin{cases} (-\Delta)^\alpha u+\lambda V(x)u+\phi u=f(x,u)-\mu g(x)|u|^{q-2}u, \text{ in } \mathbb R^3,\(-\Delta)^\alpha \phi=K_\alpha u^2, \text{ in } \mathbb R^3, \end{cases}\] where $\lambda,\mu >0$ are two parameters, $\alpha\in (0,1]$, $K_\alpha=\frac{\pi^{-\alpha}\Gamma(\alpha)}{\pi^{-(3-2\alpha)/2}\Gamma((3-2\alpha)/2)}$ and $(-\Delta)^\alpha$ is the fractional Laplacian. Under appropriate assumptions on $f$ and $g$ we obtain an existence theorem for this system.  相似文献   

10.
This paper focuses on the following Schrödinger–Poisson equations involving a fractional nonlocal operator \({\left\{\begin{array}{ll}-\Delta u+u+\phi u=f(x,u),&{\rm in}\ \mathbb{R}^3,\\(-\Delta)^{\alpha/2}\phi=u^2,\\lim_{|x|\to \infty}\phi(x)=0,&{\rm in}\ \mathbb{R}^3,\end{array}\right.}\) where \({\alpha \in (1,2]}\). Under certain assumptions, we obtain the existence of nontrivial solution of the above problem without compactness by using the methods of perturbation and the mountain pass theorem.  相似文献   

11.
对如下非线性Maxwell-Dirac系统{3Σk=1a_k(-iδ_k+K(x)Ak)u+aβu+M(x)u-K(x)A_0u=G_u(x,u),-△A_0=4πK(x)|u|~2,-△A_k=4πK(x)|a_ku),k=1,2,3进行了研究,其中x∈R~3.由于Dirac算子是上方和下方无界,相应的能量泛函是强不定的.假设非线性项满足次临界超二次的增长条件,运用强不定泛函的广义环绕定理,证明了系统驻波解的存在性.  相似文献   

12.
In this paper, by using variational methods and critical point theory, we shall mainly be concerned with the study of the existence of infinitely many solutions for the following nonlinear Schrödinger–Maxwell equations $$\left\{\begin{array}{l@{\quad}l}-\triangle u + V(x)u + \phi u = f(x, u), \quad \; \, {\rm in} \, \mathbb{R}^{3},\\ -\triangle \phi = u^{2}, \quad \quad \qquad \quad \quad \quad \quad {\rm in} \, \mathbb{R}^{3},\end{array}\right.$$ where the potential V is allowed to be sign-changing, under some more assumptions on f, we get infinitely many solutions for the system.  相似文献   

13.
We study the global in time existence of small classical solutions to the nonlinear Schrödinger equation with quadratic interactions of derivative type in two space dimensions $\left\{\begin{array}{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&;t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&;x\in {\bf R}^{2}, \end{array}\right.\quad\quad\quad\quad\quad\quad (0.1)$ where the quadratic nonlinearity has the form ${\mathcal{N}( \nabla u,\nabla v) =\sum_{k,l=1,2}\lambda _{kl} (\partial _{k}u) ( \partial _{l}v) }We study the global in time existence of small classical solutions to the nonlinear Schr?dinger equation with quadratic interactions of derivative type in two space dimensions
$\left\{{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&x\in {\bf R}^{2}, \right.\quad\quad\quad\quad\quad\quad (0.1)$\left\{\begin{array}{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&x\in {\bf R}^{2}, \end{array}\right.\quad\quad\quad\quad\quad\quad (0.1)  相似文献   

14.
In this paper, we deal with the following sublinear elliptic system: $${{\left\{\begin{array}{ll}-\Delta u + u + |\nabla u|^2 = a(x)|v|^p+ f,\quad x \in \mathbb{R}^N,\\ -\Delta v + v + |\nabla v|^2 = b(x)|u|^q+ g,\quad x \in \mathbb{R}^N,\\\end{array}\right.}}$$ where 0 <  p <  1 and 0 <  q <  1. Under suitable assumptions on the terms a, b, f and g and by using the Schauder fixed point theorem, we obtain a solution for an approximated system. The limit of the approximated solutions is a nonnegative solution.  相似文献   

15.
In this article, we are concerned with the following fractional Schrödinger–Poisson system:
$$\begin{aligned} \left\{ \begin{array}{ll} (-\Delta )^{s}u+V(x)u+\phi u=f(u)&{} \quad \hbox {in}~\mathbb {R}^{3},\\ (-\Delta )^{t}\phi =u^2&{} \quad \hbox {in}~\mathbb {R}^{3},\\ \end{array} \right. \end{aligned}$$
where \(0<s\le t<1\), \(2s+2t>3\), and \(f\in C(\mathbb {R},\mathbb {R})\). Under more relaxed assumptions on potential V(x) and f(x), we obtain the existence of ground state solutions for the above problem by adopting some new tricks. Our results here extend the existing study.
  相似文献   

16.
In this work, we give an existence result of entropy solutions for nonlinear anisotropic elliptic equation of the type $$- \mbox{div} \big( a(x,u,\nabla u)\big)+ g(x,u,\nabla u) + |u|^{p_{0}(x)-2}u = f-\mbox{div} \phi(u),\quad \mbox{ in } \Omega,$$ where $-\mbox{div}\big(a(x,u,\nabla u)\big)$ is a Leray-Lions operator, $\phi \in C^{0}(I\!\!R,I\!\!R^{N})$. The function $g(x,u,\nabla u)$ is a nonlinear lower order term with natural growth with respect to $|\nabla u|$, satisfying the sign condition and the datum $f$ belongs to $L^1(\Omega)$.  相似文献   

17.
We study the problem $$ \left\{\begin{array}{ll} {-\varepsilon^{2}\mathcal{M}^+_{\lambda,\Lambda}(D^{2}u) = f (x, u)} \quad\; {\rm in} \; \Omega,\\ {u = 0} \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad {\rm on} \; \partial{\Omega}, \end{array} \right.$$ where Ω is a smooth bounded domain in ${\mathbb{R}^{N},N > 2,}$ and show it possesses nontrivial solutions for small values of ε provided f is a nonnegative continuous function which has a positive zero. The multiplicity result is based on degree theory together with a new Liouville type theorem for ${-{M}^+_{\lambda,\Lambda}(D^{2}u) = f(u)}$ in ${\mathbb{R}^{N}}$ for nonnegative nonlinearities with zeros.  相似文献   

18.
In this paper we study the uniqueness of nontrivial positive solutions for the following second order nonlinear elliptic system:
$\left\{\begin{aligned} -\Delta u_1+V_1(|x|) u_1 &= \mu_1 u_1^3+\beta u_1u_2^2 & &\quad{\rm in} \ {\mathbb R}^{N},\\ -\Delta u_2+V_2(|x|)u_2&=\beta u_1^2u_2+\mu_2 u_2^3&&\quad{\rm in} \ {\mathbb R}^{N}.\end{aligned}\right.$\left\{\begin{aligned} -\Delta u_1+V_1(|x|) u_1 &= \mu_1 u_1^3+\beta u_1u_2^2 & &\quad{\rm in} \ {\mathbb R}^{N},\\ -\Delta u_2+V_2(|x|)u_2&=\beta u_1^2u_2+\mu_2 u_2^3&&\quad{\rm in} \ {\mathbb R}^{N}.\end{aligned}\right.  相似文献   

19.
This paper is concerned with the multiplicity and concentration of positive solutions for the nonlinear Schr?dinger?CPoisson equations $$ \left\{ \begin{array}{l@{\quad}l} -\varepsilon^2\triangle u+V(x)u+\phi(x) u=f(u)& {\rm in}\,{\mathbb R}^3, \\ -\varepsilon^2\triangle \phi=u^2 & {\rm in}\,{\mathbb R}^3, \\ u\in H^1({\mathbb R}^3), u(x) > 0,& \forall x\in{\mathbb R}^3, \\ \end{array} \right. $$ where ???>?0 is a parameter, ${V: {\mathbb R}^3\rightarrow{\mathbb R}}$ is a continuous function and ${f: {\mathbb R}\rightarrow {\mathbb R}}$ is a C 1 function having subcritical growth. The proof of the main result is based on minimax theorems and the Ljusternik?CSchnirelmann theory.  相似文献   

20.
In this paper we study the following nonhomogeneous Schrödinger–Maxwell equations $\left\{\begin{array}{ll} {-\triangle u+V(x)u+ \phi u=f(x,u)+h(x),} \quad {\rm in}\,\,\,{\mathbf{R}}^3,\\ {-\triangle \phi=u^2, \qquad\qquad\qquad\qquad\qquad\qquad\,\,\, {\rm in} \,\,{\mathbf{R}}^3,} \end{array} \right.$ where f satisfies the Ambrosetti–Rabinowitz type condition. Under appropriate assumptions on V, f and h, the existence of multiple solutions is proved by using the Ekeland’s variational principle and the Mountain Pass Theorem in critical point theory. Similar results for the nonhomogeneous Klein–Gordon–Maxwell equations $\left\{\begin{array}{ll} {-\triangle u+[m^2-(\omega+\phi)^2]u=|u|^{q-2}u+h(x), \quad {\rm in} \,\,\,{\mathbf{R}}^3,}\\ {-\triangle \phi+ \phi u^2=-\omega u^2, \qquad\qquad\qquad\qquad\qquad\,\,\, {\rm in} \,\,\,{\mathbf{R}}^3,} \end{array} \right.$ are also obtained when 2 < q < 6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号