首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
In this paper, a space fractional differential equation is considered. The equation is obtained from the parabolic equation containing advection, diffusion and reaction terms by replacing the second order derivative in space by a fractional derivative in space of order. An implicit finite difference approximation for this equation is presented. The stability and convergence of the finite difference approximation are proved. A fractional-order method of lines is also presented. Finally, some numerical results are given.  相似文献   

2.
In this paper,we study the semi-boundless mixed problem for time-fractional telegraph equation.We are able to use the integral transform method(the Fourier sin and cos transforms)to obtain the solution.  相似文献   

3.
In this paper, the authors analyze the stability of a kind of discrete-time Hopfield neural network with asymptotical weighted matrix, which can be expressed as the product of a positive definite diagonal matrix and a symmetric matrix. We obtain that it has asymptotically stable equilibriums if the network is updated asynchronously, and asymptotically stable equilibriums or vibrating final stage with 2 period if updated synchronously. To prove these, Lassale's invariance principle in difference equation is applied.  相似文献   

4.
In this paper,we consider a Riesz space-fractional reaction-dispersion equation (RSFRDE).The RSFRDE is obtained from the classical reaction-dispersion equation by replacing the second-order space derivative with a Riesz derivative of orderβ∈(1,2]. We propose an implicit finite difference approximation for RSFRDE.The stability and convergence of the finite difference approximations are analyzed.Numerical results are found in good agreement with the theoretical analysis.  相似文献   

5.
In this article, we concern the motion of relativistic membranes and null membranes in the Reissner-Nordstrm space-time. The equation of relativistic membranes moving in the Reissner-Nordstrm space-time is derived and some properties are discussed. Spherical symmetric solutions for the motion are illustrated and some interesting physical phenomena are discovered. The equations of the null membranes are derived and the exact solutions are also given. Spherical symmetric solutions for null membranes are just the two horizons of Reissner-Nordstrm space-time.  相似文献   

6.
In this paper, we consider the approximation problem of stochastic integral with respect to two-parameter Wiener process. We first introduce a kind of symmetric integral and prove it obeys the chain rule. Then we apply an integral formula of bounded variation functions with two variables to show the approximation theorem of stochastic integral in the plane. In particular, we prove that the symmetric stochastic integral is stable when the limit is taken in the sense of L~2convergence.  相似文献   

7.
An efficient method based on the projection theorem,the generalized singular value decompositionand the canonical correlation decomposition is presented to find the least-squares solution with the minimum-norm for the matrix equation A~TXB B~TX~TA=D.Analytical solution to the matrix equation is also derived.Furthermore,we apply this result to determine the least-squares symmetric and sub-antisymmetric solution ofthe matrix equation C~TXC=D with minimum-norm.Finally,some numerical results are reported to supportthe theories established in this paper.  相似文献   

8.
Fractional diffusion equation for transport phenomena in fractal media is an integro-partial differential equation. For solving the problem of this kind of equation the invariants of the group of scaling transformations are given and then used for deriving the integro-ordinary differential equation for the scale-invariant solution. With the help of Mellin transform the scale-invariant solution is obtained in terms of Fox functions. And the series and asymptotic representations for the solution are considered.  相似文献   

9.
A class of quasilinear elliptic variatlonal inequalities with double degenerate is discussed in this paper. We extend the Keldys-Fichera boundary value problem and the first boundary problem of degenerate elliptic equation to the variatlonal inequalities. We establish the existence and uniquenees of the weak solution of conespondlng problem under monstandard growth conditions.  相似文献   

10.
In this paper, a time fractional advection-dispersion equation is considered. From the relationship between the Caputo derivative and the Grunwald derivative, the Caputo derivative is approximated by using the Griinwald derivative. An implicit difference approximation for this equation is proposed. We prove that this approximation is unconditionally stable and convergent. Finally, numerical examples are given.  相似文献   

11.
This article"s goal is to investigate the space-fractional telegraph equation using an effective method called the Adomian natural decomposition method (ANDM), which is a combination of the Adomian decomposition method (ADM) and the natural transform method (NTM). Using the Banach fixed point theorem, we explore proofs for the existence and uniqueness theorems applying it to a nonlinear differential equation. Using our method, exact solutions of the space-fractional telegraph equation and time-fractional diffusion problems have been obtained. To demonstrate the effectiveness of the suggested scheme, four examples are provided.  相似文献   

12.
In this paper we consider space-time fractional telegraph equations, where the time derivatives are intended in the sense of Hilfer and Hadamard while the space-fractional derivatives are meant in the sense of Riesz-Feller. We provide the Fourier transforms of the solutions of some Cauchy problems for these fractional equations. Probabilistic interpretations of some specific cases are also provided.  相似文献   

13.
We deal with some extensions of the space-fractional diffusion equation, which is satisfied by the density of a stable process (see Mainardi et al. (2001)): the first equation considered here is obtained by adding an exponential differential (or shift) operator expressed in terms of the Riesz–Feller derivative. We prove that this produces a random component in the time-argument of the corresponding stable process, which is represented by the so-called Poisson process with drift. Analogously, if we add, to the space-fractional diffusion equation, a logarithmic differential operator involving the Riesz-derivative, we obtain, as a solution, the transition semigroup of a stable process subordinated by an independent gamma subordinator with drift. Finally, we show that an extension of the space-fractional diffusion equation, containing both the fractional shift operator and the Feller integral, is satisfied by the transition density of the process obtained by time-changing the stable process with an independent linear birth process with drift.  相似文献   

14.
The spectrum profile that emerges in molecular spectroscopy and atmospheric radiative transfer as the combined effect of Doppler and pressure broadenings is known as the Voigt profile function. Because of its convolution integral representation, the Voigt profile can be interpreted as the probability density function of the sum of two independent random variables with Gaussian density (due to the Doppler effect) and Lorentzian density (due to the pressure effect). Since these densities belong to the class of symmetric Lévy stable distributions, a probabilistic generalization is proposed as the convolution of two arbitrary symmetric Lévy densities. We study the case when the widths of the distributions considered depend on a scale factor τ that is representative of spatial inhomogeneity or temporal non-stationarity. The evolution equations for this probabilistic generalization of the Voigt function are here introduced and interpreted as generalized diffusion equations containing two Riesz space-fractional derivatives, thus classified as space-fractional diffusion equations of double order.  相似文献   

15.
Even in the one-dimensional case, dealing with the analysis of space-fractional differential equations on finite domains is a difficult issue. On a finite interval coupled with zero flux boundary conditions, different approaches have been proposed to define a space-fractional differential operator and to compute the solution to the corresponding fractional problem, but to the best of our knowledge, a clear relationship between these strategies is yet to be established. Here, by using the theory of α-stable symmetric Lévy flights and the master equation, we derive a discrete representation of the non-local operator embedding in its definition the concept of reflecting boundary conditions. We refer to this discrete operator as the reflection matrix and provide (and prove) a theorem on the analytic expression of its eigenvalues and eigenvectors. We then use this result to compare the reflection matrix to the discrete operator defined via the matrix transfer technique, and establish the validity of the latter technique in producing the correct solution to a space-fractional differential equation on a finite interval with reflecting boundary conditions. We finally discuss and emphasize the challenges in the generalisation of the proposed result to more than one spatial dimension.  相似文献   

16.
The main aim of the present work is to propose a new and simple algorithm for space-fractional telegraph equation, namely new fractional homotopy analysis transform method (HATM). The fractional homotopy analysis transform method is an innovative adjustment in Laplace transform algorithm (LTA) and makes the calculation much simpler. The proposed technique solves the nonlinear problems without using Adomian polynomials and He’s polynomials which can be considered as a clear advantage of this new algorithm over decomposition and the homotopy perturbation transform method (HPTM). The beauty of the paper is error analysis which shows that our solution obtained by proposed method converges very rapidly to the known exact solution. The numerical solutions obtained by proposed method indicate that the approach is easy to implement and computationally very attractive. Finally, several numerical examples are given to illustrate the accuracy and stability of this method.  相似文献   

17.
《Applied Mathematical Modelling》2014,38(15-16):3860-3870
In this paper, a new one-dimensional space-fractional Boussinesq equation is proposed. Two novel numerical methods with a nonlocal operator (using nodal basis functions) for the space-fractional Boussinesq equation are derived. These methods are based on the finite volume and finite element methods, respectively. Finally, some numerical results using fractional Boussinesq equation with the maximally positive skewness and the maximally negative skewness are given to demonstrate the strong potential of these approaches. The novel simulation techniques provide excellent tools for practical problems. These new numerical models can be extended to two- and three-dimensional fractional space-fractional Boussinesq equations in future research where we plan to apply these new numerical models for simulating the tidal water table fluctuations in a coastal aquifer.  相似文献   

18.
In this article, the powerful, easy-to-use and effective approximate analytical mathematical tool like homotopy analysis method (HAM) is used to solve the telegraph equation with fractional time derivative α (1 < α ? 2). By using initial values, the explicit solutions of telegraph equation for different particular cases have been derived. The numerical solutions show that only a few iterations are needed to obtain accurate approximate solutions. The method performs extremely well in terms of efficiency and simplicity to solve this historical model.  相似文献   

19.
The current article is devoted to the time-spatial regularity of the nonlocal stochastic convolution for Caputo-type time fractional nonlocal Ornstein-Ulenbeck equations. The dependence of the order of time-fractional derivative, the order of the space-fractional derivative, and the regularity of the initial data are revealed. The global existence and uniqueness of the mild solutions for time-space fractional complex Ginzburg-Landau equation driven by Gaussian white noise are established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号