首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
In this paper, symmetric space-fractional partial differential equations (SSFPDE) with the Riesz fractional operator are considered. The SSFPDE is obtained from the standard advection-dispersion equation by replacing the first-order and second-order space derivatives with the Riesz fractional derivatives of order 2β ∈ (0, 1) and 2α ∈ (1, 2], respectively. We prove that the variational solution of the SSFPDE exists and is unique. Using the Galerkin finite element method and a backward difference technique, a fully discrete approximating system is obtained, which has a unique solution according to the Lax-Milgram theorem. The stability and convergence of the fully discrete schemes are derived. Finally, some numerical experiments are given to confirm our theoretical analysis.  相似文献   

2.
We deal with some extensions of the space-fractional diffusion equation, which is satisfied by the density of a stable process (see Mainardi et al. (2001)): the first equation considered here is obtained by adding an exponential differential (or shift) operator expressed in terms of the Riesz–Feller derivative. We prove that this produces a random component in the time-argument of the corresponding stable process, which is represented by the so-called Poisson process with drift. Analogously, if we add, to the space-fractional diffusion equation, a logarithmic differential operator involving the Riesz-derivative, we obtain, as a solution, the transition semigroup of a stable process subordinated by an independent gamma subordinator with drift. Finally, we show that an extension of the space-fractional diffusion equation, containing both the fractional shift operator and the Feller integral, is satisfied by the transition density of the process obtained by time-changing the stable process with an independent linear birth process with drift.  相似文献   

3.
We solve a convection-diffusion-sorption (reaction) system on a bounded domain with dominant convection using an operator splitting method. The model arises in contaminant transport in groundwater induced by a dual-well, or in controlled laboratory experiments. The operator splitting transforms the original problem to three subproblems: nonlinear convection, nonlinear diffusion, and a reaction problem, each with its own boundary conditions. The transport equation is solved by a Riemann solver, the diffusion one by a finite volume method, and the reaction equation by an approximation of an integral equation. This approach has proved to be very successful in solving the problem, but the convergence properties where not fully known. We show how the boundary conditions must be taken into account, and prove convergence in L1,loc of the fully discrete splitting procedure to the very weak solution of the original system based on compactness arguments via total variation estimates. Generally, this is the best convergence obtained for this type of approximation. The derivation indicates limitations of the approach, being able to consider only some types of boundary conditions. A sample numerical experiment of a problem with an analytical solution is given, showing the stated efficiency of the method.  相似文献   

4.
The problem of almost everywhere stability of a nonlinear autonomous ordinary differential equation is studied using a linear transfer operator framework. The infinitesimal generator of a linear transfer operator (Perron-Frobenius) is used to provide stability conditions of an autonomous ordinary differential equation. It is shown that almost everywhere uniform stability of a nonlinear differential equation, is equivalent to the existence of a non-negative solution for a steady state advection type linear partial differential equation. We refer to this non-negative solution, verifying almost everywhere global stability, as Lyapunov density. A numerical method using finite element techniques is used for the computation of Lyapunov density.  相似文献   

5.
By applying the Landau-type transformation, we transform a Stefan problem with nonlinear free boundary condition into a system consisting of a parabolic equation and the ordinary differential equations. Fully discrete finite element method is developed to approximate the solution of a system of a parabolic equation and the ordinary differential equations. We derive optimal orders of convergence of fully discrete approximations inL2, H1 and H2 normed spaces.  相似文献   

6.
The Keldysh equation is a more general form of the classic Tricomi equation from fluid dynamics. Its well-posedness and the regularity of its solution are interesting and important. The Keldysh equation is elliptic in y>0 and is degenerate at the line y=0 in R2. Adding a special nonlinear absorption term, we study a nonlinear degenerate elliptic equation with mixed boundary conditions in a piecewise smooth domain—similar to the potential fluid shock reflection problem. By means of an elliptic regularization technique, a delicate a priori estimate and compact argument, we show that the solution of a mixed boundary value problem of the Keldysh equation is smooth in the interior and Lipschitz continuous up to the degenerate boundary under some conditions. We believe that this kind of regularity result for the solution will be rather useful.  相似文献   

7.
The choice of a differential diffusion operator with discontinuous coefficients that corresponds to a finite flow velocity and a finite concentration is substantiated. For the equation with a uniformly elliptic operator and a nonzero diffusion coefficient, conditions are established for the existence and uniqueness of a solution to the corresponding Cauchy problem. For the diffusion equation with degeneration on a half-line, it is proved that the Cauchy problem with an arbitrary initial condition has a unique solution if and only if there is no flux from the degeneration domain to the ellipticity domain of the operator. Under this condition, a sequence of solutions to regularized problems is proved to converge uniformly to the solution of the degenerate problem in L 1(R) on each interval.  相似文献   

8.
We are concerned about a singular boundary value problem for a second order nonlinear ordinary differential equation. The differential operator of this equation is the radial part of the so-called N-dimensional p-Laplacian (where p?>?1), which reduces to the classical Laplacian when p?=?2. We introduce a finite difference method to obtain a numerical solution and, in order to improve the accuracy of this method, we use a smoothing variable substitution that takes into account the behavior of the solution in the neighborhood of the singular points.  相似文献   

9.
In this paper we give a semigroup-based definition of the solution of the Gurtin-Pipkin equation with Dirichlet boundary conditions. It turns out that the dominant term of the input-to-state map is the control to displacement operator of the wave equation. This operator is surjective if the time interval is long enough. We use this observation in order to prove exact controllability in finite time of the Gurtin-Pipkin equation.  相似文献   

10.
The boundary value problem for the singularly perturbed reaction-diffusion parabolic equation in a ball in the case of spherical symmetry is considered. The derivatives with respect to the radial variable appearing in the equation are written in divergent form. The third kind boundary condition, which admits the Dirichlet and Neumann conditions, is specified on the boundary of the domain. The Laplace operator in the differential equation involves a perturbation parameter ?2, where ? takes arbitrary values in the half-open interval (0, 1]. When ? → 0, the solution of such a problem has a parabolic boundary layer in a neighborhood of the boundary. Using the integro-interpolational method and the condensing grid technique, conservative finite difference schemes on flux grids are constructed that converge ?-uniformly at a rate of O(N ?2ln2 N + N 0 ?1 ), where N + 1 and N 0 + 1 are the numbers of the mesh points in the radial and time variables, respectively.  相似文献   

11.
Non-self-adjoint second-order differential pencils on a finite interval with non-separated quasi-periodic boundary conditions and jump conditions are studied. We establish properties of spectral characteristics and investigate the inverse spectral problem of recovering the operator from its spectral data. For this inverse problem we prove the corresponding uniqueness theorem and provide an algorithm for constructing its solution.  相似文献   

12.
The use of matrix displacement mappings reduces most matrix operations required in the construction of an approximate solution of a functional or differential equation by means of Ortiz' formulation of the Tau method to index shifts. The coefficient vector of the approximate solution is defined implicitly by a very sparse system of linear algebraic equations. The contributions of the differential or functional operator, and of the supplementary conditions of the problem (initial, boundary, or multipoint conditions) are treated with a single and versatile procedure of remarkable simplicity, which can be easily implemented in a computer. We give two nontrivial examples on the application of this approach: the first is a nonlinear boundary value problem with a continuous locus of singular points and multiple solutions, where stiffness is present, the second is a functional differential equation arising in analytic number theory. In both cases we obtain results of nigh accuracy.  相似文献   

13.
有限区间上具有Neumann边界条件的Sturm-Liouville问题的谱可以唯一确定势函数,这就是经典的Ambarzumyan定理.本文将经典的Ambarzumyan定理推广到有限区间上具有算子系数的二阶与四阶微分算子中.  相似文献   

14.
Summary In this paper we apply the coupling of boundary integral and finite element methods to solve a nonlinear exterior Dirichlet problem in the plane. Specifically, the boundary value problem consists of a nonlinear second order elliptic equation in divergence form in a bounded inner region, and the Laplace equation in the corresponding unbounded exterior region, in addition to appropriate boundary and transmission conditions. The main feature of the coupling method utilized here consists in the reduction of the nonlinear exterior boundary value problem to an equivalent monotone operator equation. We provide sufficient conditions for the coefficients of the nonlinear elliptic equation from which existence, uniqueness and approximation results are established. Then, we consider the case where the corresponding operator is strongly monotone and Lipschitz-continuous, and derive asymptotic error estimates for a boundary-finite element solution. We prove the unique solvability of the discrete operator equations, and based on a Strang type abstract error estimate, we show the strong convergence of the approximated solutions. Moreover, under additional regularity assumptions on the solution of the continous operator equation, the asymptotic rate of convergenceO (h) is obtained.The first author's research was partly supported by the U.S. Army Research Office through the Mathematical Science Institute of Cornell University, by the Universidad de Concepción through the Facultad de Ciencias, Dirección de Investigación and Vicerretoria, and by FONDECYT-Chile through Project 91-386.  相似文献   

15.
In this paper, we investigate the finite volume method (FVM) for a distributed-order space-fractional advection–diffusion (AD) equation. The mid-point quadrature rule is used to approximate the distributed-order equation by a multi-term fractional model. Next, the transformed multi-term fractional equation is solved by discretizing in space by the finite volume method and in time using the Crank–Nicolson scheme. We use a novel technique to deal with the convection term, by which the Riesz fractional derivative of order 0 < γ < 1 is transformed into a fractional integral form. An important contribution of our work is the use of nodal basis function to derive the discrete form of our model. The unique solvability of the scheme is also discussed and we prove that the Crank–Nicolson scheme is unconditionally stable and convergent with second-order accuracy. Finally, we give some examples to show the effectiveness of the numerical method.  相似文献   

16.
In this paper, we address some fundamental issues concerning “time marching” numerical schemes for computing steady state solutions of boundary value problems for nonlinear partial differential equations. Simple examples are used to illustrate that even theoretically convergent schemes can produce numerical steady state solutions that do not correspond to steady state solutions of the boundary value problem. This phenomenon must be considered in any computational study of nonunique solutions to partial differential equations that govern physical systems such as fluid flows. In particular, numerical calculations have been used to “suggest” that certain Euler equations do not have a unique solution. For Burgers' equation on a finite spatial interval with Neumann boundary conditions the only steady state solutions are constant (in space) functions. Moreover, according to recent theoretical results, for any initial condition the corresponding solution to Burgers' equation must converge to a constant as t → ∞. However, we present a convergent finite difference scheme that produces false nonconstant numerical steady state “solutions.” These erroneous solutions arise out of the necessary finite floating point arithmetic inherent in every digital computer. We suggest the resulting numerical steady state solution may be viewed as a solution to a “nearby” boundary value problem with high sensitivity to changes in the boundary conditions. Finally, we close with some comments on the relevance of this paper to some recent “numerical based proofs” of the existence of nonunique solutions to Euler equations and to aerodynamic design.  相似文献   

17.
In 1973, H. Fujii investigated discrete versions of the maximum principle for the model heat equation using piecewise linear finite elements in space. In particular, he showed that the lumped mass method allows a maximum principle when the simplices of the triangulation are acute, and this is known to generalize in two space dimensions to triangulations of Delauney type. In this note we consider more general parabolic equations and first show that a maximum principle cannot hold for the standard spatially semidiscrete problem. We then show that for the lumped mass method the above conditions on the triangulation are essentially sharp. This is in contrast to the elliptic case in which the requirements are weaker. We also study conditions for the solution operator acting on the discrete initial data, with homogeneous lateral boundary conditions, to be a contraction or a positive operator.

  相似文献   


18.
In this paper, we explore the effect of numerical integration on the Galerkin meshless method used to approximate the solution of an elliptic partial differential equation with non-constant coefficients with Neumann boundary conditions. We considered Galerkin meshless methods with shape functions that reproduce polynomials of degree k?≥?1. We have obtained an estimate for the energy norm of the error in the approximate solution under the presence of numerical integration. This result has been established under the assumption that the numerical integration rule satisfies a certain discrete Green’s formula, which is not problem dependent, i.e., does not depend on the non-constant coefficients of the problem. We have also derived numerical integration rules satisfying the discrete Green’s formula.  相似文献   

19.
This article deals with a numerical approximation method using an evolutionary partial differential equation (PDE) by discrete variational splines in a finite element space. To formulate the problem, we need an evolutionary PDE equation with respect to the time and the position, certain boundary conditions and a set of approximating points. We show the existence and uniqueness of the solution and we study a computational method to compute such a solution. Moreover, we established a convergence result with respect to the time and the position. We provided several numerical and graphic examples of approximation in order to show the validity and effectiveness of the presented method.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 34: 5–18, 2018  相似文献   

20.
An anti-noise problem on a finite time interval is solved by minimization of a quadratic functional on the Hilbert space of square integrable controls. To this end, the one-dimensional wave equation with point sources and pointwise reflecting boundary conditions is decomposed into a system for the two propagating components of waves. Wellposedness of this system is proved for a class of data that includes piecewise linear initial conditions and piecewise constant forcing functions. It is shown that for such data the optimal piecewise constant control is the solution of a sparse linear system. Methods for its computational treatment are presented as well as examples of their applicability. The convergence of discrete approximations to the general optimization problem is demonstrated by finite element methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号