首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An algorithm to compute a fixed point of an upper semicontinuous point to set mapping using a simplicial subdivision is introduced. The new element of the algorithm is that for a given grid it does not start with a subsimplex but with one (arbitrary) point only; the algorithm will terminate always with a subsimplex. This subsimplex yields an approximation of a fixed point and provides the starting point for a finer grid. Some numerical results suggest that this algorithm converges more rapidly than the known algorithms. Moreover, it is very simple to implement the algorithm on the computer.  相似文献   

2.
A cascadic multigrid algorithm for semilinear elliptic problems   总被引:12,自引:0,他引:12  
Summary. We propose a cascadic multigrid algorithm for a semilinear elliptic problem. The nonlinear equations arising from linear finite element discretizations are solved by Newton's method. Given an approximate solution on the coarsest grid on each finer grid we perform exactly one Newton step taking the approximate solution from the previous grid as initial guess. The Newton systems are solved iteratively by an appropriate smoothing method. We prove that the algorithm yields an approximate solution within the discretization error on the finest grid provided that the start approximation is sufficiently accurate and that the initial grid size is sufficiently small. Moreover, we show that the method has multigrid complexity. Received February 12, 1998 / Revised version received July 22, 1999 / Published online June 8, 2000  相似文献   

3.
A new adaptive algorithm is proposed for constructing grids in the hp-version of the finite element method with piecewise polynomial basis functions. This algorithm allows us to find a solution (with local singularities) to the boundary value problem for a one-dimensional reaction-diffusion equation and smooth the grid solution via the adaptive elimination and addition of grid nodes. This algorithm is compared to one proposed earlier that adaptively refines the grid and deletes nodes with the help of an estimate for the local effect of trial addition of new basis functions and the removal of old ones. Results are presented from numerical experiments aimed at assessing the performance of the proposed algorithm on a singularly perturbed model problem with a smooth solution.  相似文献   

4.
We analyze a two grid finite element method with backtracking for the stream function formulation of the stationary Navier—Stokes equations. This two grid method involves solving one small, nonlinear coarse mesh system, one linearized system on the fine mesh and one linear correction problem on the coarse mesh. The algorithm and error analysis are presented.  相似文献   

5.
Execution time optimization is one of the most important objectives to accomplish for experiments launched on grid environments. However, the computing community is becoming more conscious about energy savings, seeking their optimization. In this work, both execution time and energy consumption are optimized through two swarm and multi-objective algorithms based on both physics and biology fields. On the one hand, multi-objective gravitational search algorithm (MOGSA) is inspired by the gravity forces between the planet masses. On the other hand, Multi-Objective Firefly Algorithm is based on the light attraction between the fireflies. These swarm algorithms are compared with the standard multi-objective algorithm non-dominated sorting genetic algorithm II to study their efficiency as multi-objective algorithms. Moreover, the best algorithm proposed, MOGSA, is compared with MOHEFT (a multi-objective version of one of the most-used algorithms in workflow scheduling, HEFT), and also with two real grid schedulers: Workload Management System and deadline budget constraint. Results show the superior performance of MOGSA regarding the others.  相似文献   

6.
Summary. A nonlinear Galerkin method using mixed finite elements is presented for the two-dimensional incompressible Navier-Stokes equations. The scheme is based on two finite element spaces and for the approximation of the velocity, defined respectively on one coarse grid with grid size and one fine grid with grid size and one finite element space for the approximation of the pressure. Nonlinearity and time dependence are both treated on the coarse space. We prove that the difference between the new nonlinear Galerkin method and the standard Galerkin solution is of the order of $H^2$, both in velocity ( and pressure norm). We also discuss a penalized version of our algorithm which enjoys similar properties. Received October 5, 1993 / Revised version received November 29, 1993  相似文献   

7.
In hybrid joint probability density function (joint PDF) algorithms for turbulent reactive flows the equations for the mean flow discretized with a classical grid based method (e.g. finite volume methods (FVM)) are solved together with a Monte Carlo (particle) method for the joint velocity composition PDF. When applied for complex geometries, the solution strategy for such methods which aims at obtaining a converged solution of the coupled problem on a sufficiently fine grid becomes very important. This paper describes one important aspect of this solution strategy, i.e. multigrid computing, which is well known to be very efficient for computing numerical solutions on fine grids. Two sets of grid based variables are involved: cell-centered variables from the FVM and node-centered variables, which denote the moments of the PDF extracted from the particle fields. Starting from a given multiblock grid environment first a new (refined or coarsened) grid is defined retaining the grid quality. The projection and prolongation operators are defined for the two sets of variables. In this new grid environment the particles are redistributed. The effectiveness of the multigrid algorithm is demonstrated. Compared to solely solving on the finest grid, convergence can be reached about one order of magnitude faster when using the multigrid algorithm in three stages. Computation time used for projection or prolongation is negligible. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
A reduced latitude-longitude grid is a modified version of a uniform spherical grid in which the number of longitudinal grid points is not fixed but depends on latitude. A method for constructing a reduced grid for a global finite-difference semi-Lagrangian atmospheric model is discussed. The key idea behind the algorithm is to generate a one-dimensional latitude grid and then to find a reduced grid that not only has a prescribed resolution structure and an admissible cell shape distortion but also minimizes a certain functional. The functional is specified as the rms interpolation error of an analytically defined function. In this way, the interpolation error, which is a major one in finite-difference semi-Lagrangian models, is taken into account. The potential of the proposed approach is demonstrated as applied to the advection equation on a sphere, which is numerically solved with various velocity fields on constructed reduced grids.  相似文献   

9.
In this article, we consider two‐grid finite element methods for solving semilinear interface problems in d space dimensions, for d = 2 or d = 3. We consider semilinear problems with discontinuous diffusion coefficients, which includes problems containing subcritical, critical, and supercritical nonlinearities. We establish basic quasioptimal a priori error estimates for Galerkin approximations. We then design a two‐grid algorithm consisting of a coarse grid solver for the original nonlinear problem, and a fine grid solver for a linearized problem. We analyze the quality of approximations generated by the algorithm and show that the coarse grid may be taken to have much larger elements than the fine grid, and yet one can still obtain approximation quality that is asymptotically as good as solving the original nonlinear problem on the fine mesh. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

10.
Two‐grid variational multiscale (VMS) algorithms for the incompressible Navier‐Stokes equations with friction boundary conditions are presented in this article. First, one‐grid VMS algorithm is used to solve this problem and some error estimates are derived. Then, two‐grid VMS algorithms are proposed and analyzed. The algorithms consist of nonlinear problem on coarse grid and linearized problem (Stokes problem or Oseen problem) on fine grid. Moreover, the stability and convergence of the present algorithms are established. Finally, Numerical results are shown to confirm the theoretical analysis. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 546–569, 2017  相似文献   

11.
An algorithm is proposed to construct a sequence of evolutionary adaptive grids, each consisting of segments of uniform grids compatible with the Richardson extrapolation procedure. The necessary numerical accuracy is achieved by using Richardson's extrapolation method to increase the accuracy of the difference solution and by controlling the nonhomogeneity parameter on passing from one segment to the next. The numerical model used in the article is the diffusion-convection equation, whose solution contains large gradients. Numerical calculations show that the algorithm attains the prespecified accuracy on a nonuniform difference grid. Numerical examples support the universality of the proposed algorithm. High accuracy results can be obtained without changing the structure of the difference schemes approximating the original problem; only the grid spacing has to be changed. Translated from Chislennye Metody v Matematicheskoi Fizike, Moscow State University, pp. 22–36, 1998.  相似文献   

12.
Given any scheme in conservation form and an appropriate uniform grid for the numerical solution of the initial value problem for one-dimensional hyperbolic conservation laws we describe a multiresolution algorithm that approximates this numerical solution to a prescribed tolerance in an efficient manner. To do so we consider the grid-averages of the numerical solution for a hierarchy of nested diadic grids in which the given grid is the finest, and introduce an equivalent multiresolution representation. The multiresolution representation of the numerical solution consists of its grid-averages for the coarsest grid and the set of errors in predicting the grid-averages of each level of resolution in this hierarchy from those of the next coarser one. Once the numerical solution is resolved to our satisfaction in a certain locality of some grid, then the prediction errors there are small for this particular grid and all finer ones; this enables us to compress data by setting to zero small components of the representation which fall below a prescribed tolerance. Therefore instead of computing the time-evolution of the numerical solution on the given grid we compute the time-evolution of its compressed multiresolution representation. Algorithmically this amounts to computing the numerical fluxes of the given scheme at the points of the given grid by a hierarchical algorithm which starts with the computation of these numerical fluxes at the points of the coarsest grid and then proceeds through diadic refinements to the given grid. At each step of refinement we add the values of the numerical flux at the center of the coarser cells. The information in the multiresolution representation of the numerical solution is used to determine whether the solution is locally well-resolved. When this is the case we replace the costly exact value of the numerical flux with an accurate enough approximate value which is obtained by an inexpensive interpolation from the coarser grid. The computational efficiency of this multiresolution algorithm is proportional to the rate of data compression (for a prescribed level of tolerance) that can be achieved for the numerical solution of the given scheme.  相似文献   

13.
In a numerical study of the electric field inside an Electro Capacitance Tomography (ECT) device and other applications, often a Poisson equation with a discontinuous coefficient needs to be solved in polar coordinates. This paper is devoted to the Immersed Interface Method (IIM) in polar coordinates and the application to the solution of the electric potential inside an ECT device. The numerical algorithm is based on a finite difference discretization on a uniform polar coordinates grid. The finite difference scheme is modified at grid points near and on the interface across which the coefficient is discontinuous so that the natural jump conditions are satisfied. The algorithm and analysis here is one step forward in applying the IIM for 3D problems in axisymmetric situations or in the spherical coordinates. Numerical examples against exact solutions and the application to ECT problems are also presented.  相似文献   

14.
Ten well-known one-dimensional test problems reflecting the characteristic features of unsteady inviscid gas flows are successfully solved by a unified numerical algorithm based on the quasigasdynamic system of equations. In all the cases, the numerical solution converges to a self-similar one as the spatial grid is refined.  相似文献   

15.
加罚Navier—Stokes方程的最佳非线性Galerkin算法   总被引:1,自引:0,他引:1  
该文提出了求解二维加罚Navier-Stokes方程的最佳非线性Galerkin算法.这个算法在于在粗网格有限元空间上求解一非线性子问题,在细网格增量有限元空间Wh上求解一线性子问题.如果线性有限元被使用及,则该算法具有和有限元Galerkin算法同阶的收敛速度.然而该文提出的算法可以节省可观的计算时间.  相似文献   

16.
A cascadic multigrid algorithm is substantiated for a grid problem obtained by discretization of a second-order elliptic equation with second-order finite elements on triangles. The efficiency of the algorithm is proved. In particular, it is shown that the number of arithmetic operations required to achieve the order of accuracy of an approximate solution equal to that of the discretization error depends linearly on the number of unknowns. The rate of convergence is found to be higher than one for linear finite elements despite achieving a higher order of accuracy.  相似文献   

17.
为了实现网格计算资源的动态自适应性管理和负载均衡调度,将移动Agent技术引入网格资源管理,并提出了一种基于Agent的网格资源调度模型.在该模型基础上,采用遗传克隆算法解决网格计算中的任务调度问题.仿真实验表明该算法不仅充分发挥了Agent的智能性、自主性,还具有良好的扩展性,提高了网格资源调度的效率.  相似文献   

18.
提出了求解外部非定常Navier-stokes方程的有限元边界元耦合的非线性Galerkin算法,证明了相应变分问题的正则性和数值解的收敛速度。收敛性分析表明如果选取粗网格尺度H是细网格尺度h的开平方数量级,则该算法提供了与古典Galerkin算法同阶的收敛速度。然而非线性Galerkin算法仅仅需要在粗网格解非线性问题,在细网格上解线性问题。因此,该算法可以节省计算工作量。  相似文献   

19.
In this article, we develop a two‐grid algorithm for nonlinear reaction diffusion equation (with nonlinear compressibility coefficient) discretized by expanded mixed finite element method. The key point is to use two‐grid scheme to linearize the nonlinear term in the equations. The main procedure of the algorithm is solving a small‐scaled nonlinear equations on the coarse grid and dealing with a linearized system on the fine space using the Newton iteration with the coarse grid solution. Error estimation to the expanded mixed finite element solution is analyzed in detail. We also show that two‐grid solution achieves the same accuracy as long as the mesh sizes satisfy H = O(h1/2). Two numerical experiments are given to verify the effectiveness of the algorithm. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

20.
The aim of this paper is to propose mixed two‐grid finite difference methods to obtain the numerical solution of the one‐dimensional and two‐dimensional Fitzhugh–Nagumo equations. The finite difference equations at all interior grid points form a large‐sparse linear system, which needs to be solved efficiently. The solution cost of this sparse linear system usually dominates the total cost of solving the discretized partial differential equation. The proposed method is based on applying a family of finite difference methods for discretizing the spatial and time derivatives. The obtained system has been solved by two‐grid method, where the two‐grid method is used for solving the large‐sparse linear systems. Also, in the proposed method, the spectral radius with local Fourier analysis is calculated for different values of h and Δt. The numerical examples show the efficiency of this algorithm for solving the one‐dimensional and two‐dimensional Fitzhugh–Nagumo equations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号