首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Let k be a field of characteristic 0 and let [`(k)] \bar{k} be a fixed algebraic closure of k. Let X be a smooth geometrically integral k-variety; we set [`(X)] = X ×k[`(k)] \bar{X} = X{ \times_k}\bar{k} and denote by [`(X)] \bar{X} . In [BvH2] we defined the extended Picard complex of X as the complex of Gal( [`(k)]
/ k ) Gal\left( {{{{\bar{k}}} \left/ {k} \right.}} \right) -modules
\textDiv( [`(X)] ) {\text{Div}}\left( {\bar{X}} \right) is in degree 1. We computed the isomorphism class of \textUPic( [`(G)] ) {\text{UPic}}\left( {\bar{G}} \right) in the derived category of Galois modules for a connected linear k-group G.  相似文献   

2.
Soit _boxclose{\mathcal V} un anneau de valuation discrète complet d’inégales caractéristiques (0, p), de corps résiduel parfait k, de corps des fractions K. Soient X une variété sur k, Y un ouvert de X. Nous prolongeons le théorème de pleine fidélité de Kedlaya de la manière suivante (en effet, nous ne supposons pas Y lisse): le foncteur canonique F\text-Isoc f (Y,X/K) ? F\text-Isoc f (Y,Y/K) {F\text{-}\mathrm{Isoc} ^{\dag} (Y,X/K) \to F\text{-}\mathrm{Isoc} ^{\dag} (Y,Y/K) } est pleinement fidèle. Supposons à présent Y lisse. Nous construisons la catégorie Isoc ff (Y,X/K){\mathrm{Isoc} ^{\dag\dag} (Y,X/K) } des isocristaux partiellement surcohérents sur (Y, X) dont les objets sont certains D{\mathcal D} -modules arithmétiques. De plus, nous vérifions l’équivalence de catégories sp (Y,X),+: Isoc f (Y,X/K) @ Isoc ff (Y,X/K){{\rm sp} _{(Y,X),+}: \mathrm{Isoc} ^{\dag} (Y,X/K) \cong \mathrm{Isoc} ^{\dag\dag} (Y,X/K)} .  相似文献   

3.
Summary. Let K and [`(K)] \overline K be fields containing \Bbb Q {\Bbb Q} . We characterize pairs of additive functions f,g: K ?[`(K)] f,g: K \to \overline K satisfying a functional equation¶¶ g(xln) = f(xl)n     \textrespectively        g(xln) = Axln + xln-lf(xl) g(x^{ln}) = f(x^l)^n \quad \text{respectively} \qquad g(x^{ln}) = Ax^{ln} + x^{ln-l}f(x^l) ,¶where n ? \Bbb Z \{0,1} n \in {\Bbb Z} \setminus \{0,1\} , l ? \Bbb N l\in {\Bbb N} and A ? K A \in K .  相似文献   

4.
We study certain groupoids generating Abelian, strongly Abelian, and Hamiltonian varieties. An algebra is Abelian if t( a,[`(c)] ) = t( a,[`(d)] ) ? t( b,[`(c)] ) = t( b,[`(d)] ) t\left( {a,\bar{c}} \right) = t\left( {a,\bar{d}} \right) \to t\left( {b,\bar{c}} \right) = t\left( {b,\bar{d}} \right) for any polynomial operation on the algebra and for all elements a, b, [`(c)] \bar{c} , [`(d)] \bar{d} . An algebra is strongly Abelian if t( a,[`(c)] ) = t( b,[`(d)] ) ? t( e,[`(c)] ) = t( e,[`(d)] ) t\left( {a,\bar{c}} \right) = t\left( {b,\bar{d}} \right) \to t\left( {e,\bar{c}} \right) = t\left( {e,\bar{d}} \right) for any polynomial operation on the algebra and for arbitrary elements a, b, e, [`(c)] \bar{c} , [`(d)] \bar{d} . An algebra is Hamiltonian if any subalgebra of the algebra is a congruence class. A variety is Abelian (strongly Abelian, Hamiltonian) if all algebras in a respective class are Abelian (strongly Abelian, Hamiltonian). We describe semigroups, groupoids with unity, and quasigroups generating Abelian, strongly Abelian, and Hamiltonian varieties.  相似文献   

5.
Let ${\Phi : \mathbb{R} \to [0, \infty)}Let F: \mathbbR ? [0, ¥){\Phi : \mathbb{R} \to [0, \infty)} be a Young function and let f = (fn)n ? \mathbbZ+{f = (f_n)_n\in\mathbb{Z}_{+}} be a martingale such that F(fn) ? L1{\Phi(f_n) \in L_1} for all n ? \mathbbZ+{n \in \mathbb{Z}_{+}} . Then the process F(f) = (F(fn))n ? \mathbbZ+{\Phi(f) = (\Phi(f_n))_n\in\mathbb{Z}_{+}} can be uniquely decomposed as F(fn)=gn+hn{\Phi(f_n)=g_n+h_n} , where g=(gn)n ? \mathbbZ+{g=(g_n)_n\in\mathbb{Z}_{+}} is a martingale and h=(hn)n ? \mathbbZ+{h=(h_n)_n\in\mathbb{Z}_{+}} is a predictable nondecreasing process such that h 0 = 0 almost surely. The main results characterize those Banach function spaces X such that the inequality ||h||XC ||F(Mf) ||X{\|{h_{\infty}}\|_{X} \leq C \|{\Phi(Mf)} \|_X} is valid, and those X such that the inequality ||h||XC ||F(Sf) ||X{\|{h_{\infty}}\|_{X} \leq C \|{\Phi(Sf)} \|_X} is valid, where Mf and Sf denote the maximal function and the square function of f, respectively.  相似文献   

6.
For a resistance form ${(X, \mathcal{D}(\varepsilon),\varepsilon)}For a resistance form (X, D(e),e){(X, \mathcal{D}(\varepsilon),\varepsilon)} and a point x0 ? X{x_0 \in X} as boundary, on the space X0:=X \{x0}{X_0:=X {\setminus}\{x_0\}} we consider the Dirichlet space Dx0:={f ? D(e) | f(x0)=0}{\mathcal{D}_{x_0}:=\{f\in\mathcal{D}(\varepsilon)\, |\, f(x_0)=0\}} and we develop a good potential theory. For any finely open subset D of X 0 we consider a localized resistance form (DX0 \ D,eD{\mathcal{D}_{X_0 {\setminus} D},\varepsilon_{D}}) where DX0 \ D:={f ? Dx0 | f=0{\mathcal{D}_{X_0 {\setminus} D}:=\{f\in\mathcal{D}_{x_0}\, |\, f=0} on X0 \ D}, eD(f,g):=e(f,g){X_0 {\setminus} D\},\, \varepsilon_D(f,g):=\varepsilon(f,g)} for all f,g ? DX0 \ D{f,g\in\mathcal{D}_{X_0 {\setminus} D}}. The main result is the equivalence between the local property of the resistance form and the sheaf property for the excessive elements on finely open sets.  相似文献   

7.
Let L\cal{L} be a positive definite bilinear functional, then the Uvarov transformation of L\cal{L} is given by  U(p,q) = L(p,q) + m p(a)[`(q)](a-1) +[`(m)] p([`(a)]-1)\,\mathcal{U}(p,q) = \mathcal{L}(p,q) + m\,p(\alpha)\overline{q}(\alpha^{-1}) + \overline{m}\,p(\overline{\alpha}^{-1}) [`(q)]([`(a)])\overline{q}(\overline{\alpha}) where $|\alpha| > 1, m \in \mathbb{C}$|\alpha| > 1, m \in \mathbb{C}. In this paper we analyze conditions on m for U\cal{U} to be positive definite in the linear space of polynomials of degree less than or equal to n. In particular, we show that m has to lie inside a circle in the complex plane defined by α, n and the moments associated with L\cal{L}. We also give an upper bound for the radius of this circle that depends only on α and n. This and other conditions on m are visualized for some examples.  相似文献   

8.
We show that any filtering family of closed convex subsets of a finite-dimensional CAT(0) space X has a non-empty intersection in the visual bordification ${ \overline{X} = X \cup \partial X}We show that any filtering family of closed convex subsets of a finite-dimensional CAT(0) space X has a non-empty intersection in the visual bordification [`(X)] = X è?X{ \overline{X} = X \cup \partial X} . Using this fact, several results known for proper CAT(0) spaces may be extended to finite-dimensional spaces, including the existence of canonical fixed points at infinity for parabolic isometries, algebraic and geometric restrictions on amenable group actions, and geometric superrigidity for non-elementary actions of irreducible uniform lattices in products of locally compact groups.  相似文献   

9.
Let \mathbb Dn:={z=(z1,?, zn) ? \mathbb Cn:|zj| < 1,   j=1,?, n}{\mathbb {D}^n:=\{z=(z_1,\ldots, z_n)\in \mathbb {C}^n:|z_j| < 1, \;j=1,\ldots, n\}}, and let [`(\mathbbD)]n{\overline{\mathbb{D}}^n} denote its closure in \mathbb Cn{\mathbb {C}^n}. Consider the ring
Cr([`(\mathbbD)]n;\mathbb C) = {f:[`(\mathbbD)]n? \mathbb C:f   is   continuous   and  f(z)=[`(f([`(z)]))]   (z ? [`(\mathbbD)]n)}C_{\rm r}(\overline{\mathbb{D}}^n;\mathbb {C}) =\left\{f: \overline{\mathbb{D}}^n\rightarrow \mathbb {C}:f \,\, {\rm is \,\, continuous \,\, and}\,\, f(z)=\overline{f(\overline{z})} \;(z\in \overline{\mathbb{D}}^n)\right\}  相似文献   

10.
It is shown that if a point x 0 ∊ ℝ n , n ≥ 3, is an essential isolated singularity of an open discrete Q-mapping f : D → [`(\mathbb Rn)] \overline {\mathbb {R}^n} , B f is the set of branch points of f in D; and a point z 0 ∊ [`(\mathbb Rn)] \overline {\mathbb {R}^n} is an asymptotic limit of f at the point x 0; then, for any neighborhood U containing the point x 0; the point z 0 ∊ [`(f( Bf ?U ))] \overline {f\left( {B_f \cap U} \right)} provided that the function Q has either a finite mean oscillation at the point x 0 or a logarithmic singularity whose order does not exceed n − 1: Moreover, for n ≥ 2; under the indicated conditions imposed on the function Q; every point of the set [`(\mathbb Rn)] \overline {\mathbb {R}^n} \ f(D) is an asymptotic limit of f at the point x 0. For n ≥ 3, the following relation is true: [`(\mathbbRn )] \f( D ) ì [`(f Bf )] \overline {\mathbb{R}^n } \backslash f\left( D \right) \subset \overline {f\,B_f } . In addition, if ¥ ? f( D ) \infty \notin f\left( D \right) , then the set f B f is infinite and x0 ? [`(Bf )] x_0 \in \overline {B_f } .  相似文献   

11.
We study the class of inner functions Q{\Theta} whose zero set Z(Q){Z(\Theta)} stays hyperbolically close to [`(Z\mathbbD(Q))]{\overline{Z_\mathbb{D}(\Theta)}} on the corona of H and show that these functions are uniformly approximable by interpolating Blaschke products.  相似文献   

12.
Let \frak X, \frak F,\frak X\subseteqq \frak F\frak {X}, \frak {F},\frak {X}\subseteqq \frak {F}, be non-trivial Fitting classes of finite soluble groups such that G\frak XG_{\frak {X}} is an \frak X\frak {X}-injector of G for all G ? \frak FG\in \frak {F}. Then \frak X\frak {X} is called \frak F\frak {F}-normal. If \frak F=\frak Sp\frak {F}=\frak {S}_{\pi }, it is known that (1) \frak X\frak {X} is \frak F\frak {F}-normal precisely when \frak X*=\frak F*\frak {X}^{\ast }=\frak {F}^{\ast }, and consequently (2) \frak F í \frak X\frak N\frak {F}\subseteq \frak {X}\frak {N} implies \frak X*=\frak F*\frak {X}^{\ast }=\frak {F}^{\ast }, and (3) there is a unique smallest \frak F\frak {F}-normal Fitting class. These assertions are not true in general. We show that there are Fitting classes \frak F\not = \frak Sp\frak {F}\not =\frak {S}_{\pi } filling property (1), whence the classes \frak Sp\frak {S}_{\pi } are not characterized by satisfying (1). Furthermore we prove that (2) holds true for all Fitting classes \frak F\frak {F} satisfying a certain extension property with respect to wreath products although there could be an \frak F\frak {F}-normal Fitting class outside the Lockett section of \frak F\frak {F}. Lastly, we show that for the important cases \frak F=\frak Nnn\geqq 2\frak {F}=\frak {N}^{n},\ n\geqq 2, and \frak F=\frak Sp1?\frak Sprpi \frak {F}=\frak {S}_{p_{1}}\cdots \frak {S}_{p_{r}},\ p_{i} primes, there is a unique smallest \frak F\frak {F}-normal Fitting class, which we describe explicitly.  相似文献   

13.
Let n ≥ 2 be a fixed integer, let q and c be two integers with q > n and (n, q) = (c, q) = 1. For every positive integer a which is coprime with q we denote by [`(a)]c{\overline{a}_{c}} the unique integer satisfying 1 £ [`(a)]cq{1\leq\overline{a}_{c} \leq{q}} and a[`(a)]c o c(mod q){a\overline{a}_{c} \equiv{c}({\rm mod}\, q)}. Put
L(q)={a ? Z+: (a,q)=1, n \not| a+[`(a)]c }.L(q)=\{a\in{Z^{+}}: (a,q)=1, n {\not\hskip0.1mm|} a+\overline{a}_{c} \}.  相似文献   

14.
In this work, we investigate some groupoids that are Abelian algebras and Hamiltonian algebras. An algebra is Abelian if for every polynomial operation and for all elements a, b, [`(c)] \bar{c} , [`(d)] \bar{d} the implication t( a,[`(c)] ) = t( a,[`(d)] ) T t( b,[`(c)] ) = t( b,[`(d)] ) t\left( {a,\bar{c}} \right) = t\left( {a,\bar{d}} \right) \Rightarrow t\left( {b,\bar{c}} \right) = t\left( {b,\bar{d}} \right) holds. An algebra is Hamiltonian if every subalgebra is a block of some congruence on the algebra. R. J. Warne in 1994 described the structure of the Abelian semigroups. In this work, we describe the Abelian groupoids with identity, the Abelian finite quasigroups, and the Abelian semigroups S such that abS = aS and Sba = Sa for all a, bS. We prove that a finite Abelian quasigroup is a Hamiltonian algebra. We characterize the Hamiltonian groupoids with identity and semigroups under the condition of Abelianity of these algebras.  相似文献   

15.
Let ${\mathbb {F}}Let \mathbb F{\mathbb {F}} a finite field. We show that the universal characteristic factor for the Gowers–Host–Kra uniformity seminorm U k (X) for an ergodic action (Tg)g ? \mathbb Fw{(T_{g})_{{g} \in \mathbb {F}^{\omega}}} of the infinite abelian group \mathbb Fw{\mathbb {F}^{\omega}} on a probability space X = (X, B, m){X = (X, \mathcal {B}, \mu)} is generated by phase polynomials f: X ? S1{\phi : X \to S^{1}} of degree less than C(k) on X, where C(k) depends only on k. In the case where k £ char(\mathbb F){k \leq {\rm char}(\mathbb {F})} we obtain the sharp result C(k) = k. This is a finite field counterpart of an analogous result for \mathbb Z{\mathbb {Z}} by Host and Kra [HK]. In a companion paper [TZ] to this paper, we shall combine this result with a correspondence principle to establish the inverse theorem for the Gowers norm in finite fields in the high characteristic case k £ char(\mathbb F){k \leq {\rm char}(\mathbb {F})} , with a partial result in low characteristic.  相似文献   

16.
In this paper we classify the centers localized at the origin of coordinates, the cyclicity of their Hopf bifurcation and their isochronicity for the polynomial differential systems in \mathbbR2{\mathbb{R}^2} of degree d that in complex notation z = x + i y can be written as
[(z)\dot] = (l+i) z + (z[`(z)])\fracd-52 (A z4+j[`(z)]1-j + B z3[`(z)]2 + C z2-j[`(z)]3+j+D[`(z)]5), \dot z = (\lambda+i) z + (z \overline{z})^{\frac{d-5}{2}} \left(A z^{4+j} \overline{z}^{1-j} + B z^3 \overline{z}^2 + C z^{2-j} \overline{z}^{3+j}+D \overline{z}^5\right),  相似文献   

17.
Let M be (2n-1)\mathbbCP2#2n[`(\mathbbCP)]2(2n-1)\mathbb{CP}^{2}\#2n\overline{\mathbb{CP}}{}^{2} for any integer n≥1. We construct an irreducible symplectic 4-manifold homeomorphic to M and also an infinite family of pairwise non-diffeomorphic irreducible non-symplectic 4-manifolds homeomorphic to M. We also construct such exotic smooth structures when M is \mathbbCP2#4[`(\mathbbCP)]2\mathbb{CP}{}^{2}\#4\overline {\mathbb{CP}}{}^{2} or 3\mathbbCP2#k[`(\mathbbCP)]23\mathbb{CP}{}^{2}\#k\overline{\mathbb{CP}}{}^{2} for k=6,8,10.  相似文献   

18.
We prove that a crepant resolution π : YX of a Ricci-flat Kähler cone X admits a complete Ricci-flat Kähler metric asymptotic to the cone metric in every Kähler class in ${H^2_c(Y,\mathbb{R})}We prove that a crepant resolution π : YX of a Ricci-flat K?hler cone X admits a complete Ricci-flat K?hler metric asymptotic to the cone metric in every K?hler class in H2c(Y,\mathbbR){H^2_c(Y,\mathbb{R})}. A K?hler cone (X,[`(g)]){(X,\bar{g})} is a metric cone over a Sasaki manifold (S, g), i.e. ${X=C(S):=S\times\mathbb{R}_{ >0 }}${X=C(S):=S\times\mathbb{R}_{ >0 }} with [`(g)]=dr2 +r2 g{\bar{g}=dr^2 +r^2 g}, and (X,[`(g)]){(X,\bar{g})} is Ricci-flat precisely when (S, g) Einstein of positive scalar curvature. This result contains as a subset the existence of ALE Ricci-flat K?hler metrics on crepant resolutions p:Y? X=\mathbbCn /G{\pi:Y\rightarrow X=\mathbb{C}^n /\Gamma}, with G ì SL(n,\mathbbC){\Gamma\subset SL(n,\mathbb{C})}, due to P. Kronheimer (n = 2) and D. Joyce (n > 2). We then consider the case when X = C(S) is toric. It is a result of A. Futaki, H. Ono, and G. Wang that any Gorenstein toric K?hler cone admits a Ricci-flat K?hler cone metric. It follows that if a toric K?hler cone X = C(S) admits a crepant resolution π : YX, then Y admits a T n -invariant Ricci-flat K?hler metric asymptotic to the cone metric (X,[`(g)]){(X,\bar{g})} in every K?hler class in H2c(Y,\mathbbR){H^2_c(Y,\mathbb{R})}. A crepant resolution, in this context, is a simplicial fan refining the convex polyhedral cone defining X. We then list some examples which are easy to construct using toric geometry.  相似文献   

19.
Let ϕ be a function in the Wiener amalgam space W(L1)\emph{W}_{\infty}(L_1) with a non-vanishing property in a neighborhood of the origin for its Fourier transform [^(f)]\widehat{\phi}, t={tn}n ? \mathbb Z{\bf \tau}=\{\tau_n\}_{n\in {{\mathbb Z}}} be a sampling set on ℝ and VftV_\phi^{\bf \tau} be a closed subspace of L2(\mathbbR)L_2(\hbox{\ensuremath{\mathbb{R}}}) containing all linear combinations of τ-translates of ϕ. In this paper we prove that every function f ? Vftf\in V_\phi^{\bf \tau} is uniquely determined by and stably reconstructed from the sample set Lft(f)={ò\mathbbR f(t)[`(f(t-tn))] dt}n ? \mathbb ZL_\phi^{\bf \tau}(f)=\Big\{\int_{\hbox{\ensuremath{\mathbb{R}}}} f(t) \overline{\phi(t-\tau_n)} dt\Big\}_{n\in {{\mathbb Z}}}. As our reconstruction formula involves evaluating the inverse of an infinite matrix we consider a partial reconstruction formula suitable for numerical implementation. Under an additional assumption on the decay rate of ϕ we provide an estimate to the corresponding error.  相似文献   

20.
Let X be a metric measure space with an s-regular measure μ. We prove that if A ì X{A\subset X} is r{\varrho} -porous, then dimp(A) £ s-crs{{\rm {dim}_p}(A)\le s-c\varrho^s} where dimp is the packing dimension and c is a positive constant which depends on s and the structure constants of μ. This is an analogue of a well known asymptotically sharp result in Euclidean spaces. We illustrate by an example that the corresponding result is not valid if μ is a doubling measure. However, in the doubling case we find a fixed N ì X{N\subset X} with μ(N) = 0 such that dimp(A) £ dimp(X)-c(log\tfrac1r)-1rt{{\rm {dim}_p}(A)\le{\rm {dim}_p}(X)-c(\log \tfrac1\varrho)^{-1}\varrho^t} for all r{\varrho} -porous sets A ì X\ N{A \subset X{\setminus} N} . Here c and t are constants which depend on the structure constant of μ. Finally, we characterize uniformly porous sets in complete s-regular metric spaces in terms of regular sets by verifying that A is uniformly porous if and only if there is t < s and a t-regular set F such that A ì F{A\subset F} .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号