首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper,a global optimization algorithm is proposed for nonlinear sum of ratios problem(P).The algorithm works by globally solving problem(P1) that is equivalent to problem(P),by utilizing linearization technique a linear relaxation programming of the (P1) is then obtained.The proposed algorithm is convergent to the global minimum of(P1) through the successive refinement of linear relaxation of the feasible region of objective function and solutions of a series of linear relaxation programming.Nume...  相似文献   

2.
Successive linear programming (SLP) algorithms solve nonlinear optimization problems via a sequence of linear programs. We present an approach for a special class of nonlinear programming problems, which arise in multiperiod coal blending. The class of nonlinear programming problems and the solution approach considered in this paper are quite different from previous work. The algorithm is very simple, easy to apply and can be applied to as large a problem as the linear programming code can handle. The quality of solution, produced by the proposed algorithm, is discussed and the results of some test problems, in the real world environment, are provided.  相似文献   

3.
In this paper, a branch and bound approach is proposed for global optimization problem (P) of the sum of generalized polynomial fractional functions under generalized polynomial constraints, which arises in various practical problems. Due to its intrinsic difficulty, less work has been devoted to globally solving this problem. By utilizing an equivalent problem and some linear underestimating approximations, a linear relaxation programming problem of the equivalent form is obtained. Consequently, the initial non-convex nonlinear problem (P) is reduced to a sequence of linear programming problems through successively refining the feasible region of linear relaxation problem. The proposed algorithm is convergent to the global minimum of the primal problem by means of the solutions to a series of linear programming problems. Numerical results show that the proposed algorithm is feasible and can successfully be used to solve the present problem (P).  相似文献   

4.
本文给出非凸二次约束上二次比式和问题(P)的一个新的加速分枝定界算法.该算法利用线性化技术建立了问题(P)的松弛线性规划问题(RLP),通过对其可行域的细分和求解一系列线性规划问题,不断更新(P)的全局最优值的上下界.为了提高收敛速度,从最优性和可行性两方面,提出了新的删除技术,理论上证明该算法是收敛的,数值试验表明了算法的有效性和可行性.  相似文献   

5.
对带非凸二次约束的二次比式和问题(P)给出分枝定界算法,首先将问题(P)转化为其等价问题(Q),然后利用线性化技术,建立了(Q)松弛线性规划问题(RLP),通过对(RLP)可行域的细分及求解一系列线性规划问题,不断更新(Q)的上下界,从理论上证明了算法的收敛性,数值实验表明了算法的可行性和有效性.  相似文献   

6.
In this paper, a global optimization algorithm is proposed for solving sum of generalized polynomial ratios problem (P) which arises in various practical problems. Due to its intrinsic difficulty, less work has been devoted to globally solve the problem (P). For such problems, we present a branch and bound algorithm. In this method, by utilizing exponent transformation and new three-level linear relaxation method, a sequence of linear relaxation programming of the initial nonconvex programming problem (P) are derived which are embedded in a branch and bound algorithm. The proposed method need not introduce new variables and constraints and it is convergent to the global minimum of prime problem by means of the subsequent solutions of a series of linear programming problems. Several numerical examples in the literatures are tested to demonstrate that the proposed algorithm can systematically solve these examples to find the approximate ?-global optimum.  相似文献   

7.
研究了线性半向量二层规划问题的全局优化方法. 利用下层问题的对偶间隙构造了线性半向量二层规划问题的罚问题, 通过分析原问题的最优解与罚问题可行域顶点之间的关系, 将线性半向量二层规划问题转化为有限个线性规划问题, 从而得到线性半向量二层规划问题的全局最优解. 数值结果表明所设计的全局优化方法对线性半向量二层规划问题是可行的.  相似文献   

8.
The problem (P) of optimizing a linear function over the efficient set of a multiple objective linear program has many important applications in multiple criteria decision making. Since the efficient set is in general a nonconvex set, problem (P) can be classified as a global optimization problem. Perhaps due to its inherent difficulty, it appears that no precisely-delineated implementable algorithm exists for solving problem (P) globally. In this paper a relaxation algorithm is presented for finding a globally optimal solution for problem (P). The algorithm finds an exact optimal solution to the problem after a finite number of iterations. A detailed discussion is included of how to implement the algorithm using only linear programming methods. Convergence of the algorithm is proven, and a sample problem is solved.Research supported by a grant from the College of Business Administration, University of Florida, Gainesville, Florida, U.S.A.  相似文献   

9.
Consider the class of linear-quadratic (LQ) optimal control problems with continuous linear state constraints, that is, constraints imposed on every instant of the time horizon. This class of problems is known to be difficult to solve numerically. In this paper, a computational method based on a semi-infinite programming approach is given. The LQ optimal control problem is formulated as a positive-quadratic infinite programming problem. This can be done by considering the control as the decision variable, while taking the state as a function of the control. After parametrizing the decision variable, an approximate quadratic semi-infinite programming problem is obtained. It is shown that, as we refine the parametrization, the solution sequence of the approximate problems converges to the solution of the infinite programming problem (hence, to the solution of the original optimal control problem). Numerically, the semi-infinite programming problems obtained above can be solved efficiently using an algorithm based on a dual parametrization method.  相似文献   

10.
This article is concerned with two global optimization problems (P1) and (P2). Each of these problems is a fractional programming problem involving the maximization of a ratio of a convex function to a convex function, where at least one of the convex functions is a quadratic form. First, the article presents and validates a number of theoretical properties of these problems. Included among these properties is the result that, under a mild assumption, any globally optimal solution for problem (P1) must belong to the boundary of its feasible region. Also among these properties is a result that shows that problem (P2) can be reformulated as a convex maximization problem. Second, the article presents for the first time an algorithm for globally solving problem (P2). The algorithm is a branch and bound algorithm in which the main computational effort involves solving a sequence of convex programming problems. Convergence properties of the algorithm are presented, and computational issues that arise in implementing the algorithm are discussed. Preliminary indications are that the algorithm can be expected to provide a practical approach for solving problem (P2), provided that the number of variables is not too large.  相似文献   

11.
为求线性比试和问题的全局最优解,本文给出了一个分支定界算法.通过一个等价问题和一个新的线性化松弛技巧,初始的非凸规划问题归结为一系列线性规划问题的求解.借助于这一系列线性规划问题的解,算法可收敛于初始非凸规划问题的最优解.算法的计算量主要是一些线性规划问题的求解.数值算例表明算法是切实可行的.  相似文献   

12.
Many local optimal solution methods have been developed for solving generalized geometric programming (GGP). But up to now, less work has been devoted to solving global optimization of (GGP) problem due to the inherent difficulty. This paper considers the global minimum of (GGP) problems. By utilizing an exponential variable transformation and the inherent property of the exponential function and some other techniques the initial nonlinear and nonconvex (GGP) problem is reduced to a sequence of linear programming problems. The proposed algorithm is proven that it is convergent to the global minimum through the solutions of a series of linear programming problems. Test results indicate that the proposed algorithm is extremely robust and can be used successfully to solve the global minimum of (GGP) on a microcomputer.  相似文献   

13.
In this article, a branch and-bound outer approximation algorithm is presented for globally solving a sum-of-ratios fractional programming problem. To solve this problem, the algorithm instead solves an equivalent problem that involves minimizing an indefinite quadratic function over a nonempty, compact convex set. This problem is globally solved by a branch-and-bound outer approximation approach that can create several closed-form linear inequality cuts per iteration. In contrast to pure outer approximation techniques, the algorithm does not require computing the new vertices that are created as these cuts are added. Computationally, the main work of the algorithm involves solving a sequence of convex programming problems whose feasible regions are identical to one another except for certain linear constraints. As a result, to solve these problems, an optimal solution to one problem can potentially be used to good effect as a starting solution for the next problem.  相似文献   

14.
Dynamic programming has been used to find the optimal solution for one-dimensional slitting problems in which the value of a piece is nonlinearly dependent on both the width of the piece and the number of defects on it. In this paper, linear programming is proposed to solve this problem. Additionally, it is shown that this problem can be converted to be a shortest path problem and can be solved easily by an acyclic algorithm. Either a linear programming approach or a shortest path approach are both simpler and faster than the use of dynamic programming.  相似文献   

15.
We consider the problem of obtaining integer solutions to a minmax linear programming problem. Although this general problem is NP-complete, it is shown that a restricted version of this problem can be solved in polynomial time. For this restricted class of problems two polynomial time algorithms are suggested, one of which is strongly polynomial whenever its continuous analogue and an associated linear programming problem can be solved by a strongly polynomial algorithm. Our algorithms can also be used to obtain integer solutions for the minmax transportation problem with an inequality budget constraint. The equality constrained version of this problem is shown to be NP-complete. We also provide some new insights into the solution procedures for the continuous minmax linear programming problem.  相似文献   

16.
双层线性规划的一个全局优化方法   总被引:7,自引:0,他引:7  
用线性规划对偶理论分析了双层线性规划的最优解与下层问题的对偶问题可行域上极点之间的关系,通过求得下层问题的对偶问题可行域上的极点,将双层线性规划转化为有限个线性规划问题,从而用线性规划方法求得问题的全局最优解.由于下层对偶问题可行域上只有有限个极点,所以方法具有全局收敛性.  相似文献   

17.
This paper considers a multicast routing problem to find the minimum cost tree where the whole communication link delay on each path(route) of the tree is subject to a given delay allowance. The problem is formulated as an integer programming problem by using path variables. An associated problem reduction property is then characterised to reduce the solution space. Moreover, a polynomial time column generation procedure is exploited to solve the associated linear programming relaxation with such solution space reduced. Therefore a branch-and-price algorithm is derived to obtain the optimal integer solution(tree) for the problem. Computational results show that the algorithm can solve practical size problems in a reasonable length of time.  相似文献   

18.
This article presents an outcome-space pure cutting-plane algorithm for globally solving the linear multiplicative programming problem. The framework of the algorithm is taken from a pure cutting-plane decision set-based method developed by Horst and Tuy for solving concave minimization problems. By adapting this method to an outcome-space reformulation of the linear multiplicative programming problem, rather than applying directly the method to the original decision-set formulation, it is expected that considerable computational savings can be obtained. Also, we show how additional computational benefits might be obtained by implementing the new algorithm appropriately. To illustrate the new algorithm, we apply it to the solution of a sample problem.  相似文献   

19.
一类比式和问题的全局优化方法   总被引:1,自引:1,他引:0  
对于一类比式和问题(P)给出一全局优化算法.首先利用线性约束的特征推导出问题(P)的等价问题(P1),然后利用新的线性松弛方法建立了问题(P1)的松弛线性规划(RLP),通过对目标函数可行域线性松弛的连续细分以及求解一系列线性规划,提出的分枝定界算法收敛到问题(P)的全局最优解.最终数值实验结果表明了该算法的可行性和高效性.  相似文献   

20.
《Optimization》2012,61(7):895-917
Generalized geometric programming (GGP) problems occur frequently in engineering design and management, but most existing methods for solving GGP actually only consider continuous variables. This article presents a new branch-and-bound algorithm for globally solving GGP problems with discrete variables. For minimizing the problem, an equivalent monotonic optimization problem (P) with discrete variables is presented by exploiting the special structure of GGP. In the algorithm, the lower bounds are computed by solving ordinary linear programming problems that are derived via a linearization technique. In contrast to pure branch-and-bound methods, the algorithm can perform a domain reduction cut per iteration by using the monotonicity of problem (P), which can suppress the rapid growth of branching tree in the branch-and-bound search so that the performance of the algorithm is further improved. Computational results for several sample examples and small randomly generated problems are reported to vindicate our conclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号