首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT. Predator‐prey relationships account for an important part of all interactions betweenspecies. In this paper we provide a microfoundation for such predator‐prey relations in afood chain. Basic entities of our analysis are representative organisms of species modeled similar to economic households. With prices as indicators of scarcity, organisms are assumed to behave as if they maximize their net biomass subject to constraints which express the organisms' risk of being preyed upon during predation. Like consumers, organisms face a ‘budget constraint’ requiring their expenditure on prey biomass not to exceed their revenue from supplying own biomass. Short‐run ecosystem equilibria are defined and derived. The net biomass acquired by the representative organism in the short term determines the positive or negative population growth. Moving short‐run equilibria constitute the dynamics of the predator‐prey relations that are characterized in numerical analysis. The population dynamics derived here turn out to differ significantly from those assumed in the standard Lotka‐Volterra model.  相似文献   

2.
ABSTRACT. In this paper we develop a micro ecosystem model whose basic entities are representative organisms which behave as if maximizing their net offspring under constraints. Net offspring is increasing in prey biomass intake, declining in the loss of own biomass to predators and Allee's law applies. The organism's constraint reflects its perception of how scarce its own biomass and the biomass of its prey is. In the short‐run periods prices (scarcity indicators) coordinate and determine all biomass transactions and net offspring which directly translates into population growth functions. We are able to explicitly determine these growth functions for a simple food web when specific parametric net offspring functions are chosen in the micro‐level ecosystem model. For the case of a single species our model is shown to yield the well‐known Verhulst‐Pearl logistic growth function. With two species in predator‐prey relationship, we derive differential equations whose dynamics are completely characterized and turn out to be similar to the predator‐prey model with Michaelis‐Menten type functional response. With two species competing for a single resource we find that coexistence is a knife‐edge feature confirming Tschirhart's [2002] result in a different but related model.  相似文献   

3.
In a natural ecosystem, specialist predators feed almost exclusively on one species of prey. But generalist predators feed on many types of species. Consequently, their dynamics is not coupled to the dynamics of a specific prey population. However, the defense of prey formed by congregating made the predator tend to move in the direction of lower concentration of prey species. This is described by cross-diffusion in a generalist predator–prey model. First, the positive equilibrium solution is globally asymptotically stable for the ODE system and for the reaction–diffusion system without cross-diffusion, respectively, hence it does not belong to the classical Turing instability scheme. But it becomes linearly unstable only when cross-diffusion also plays a role. This implies that cross–diffusion can lead to the occurrence and disappearance of the instability. Our results exhibit some interesting combining effects of cross-diffusion, predations and intra-species interactions. Furthermore, we consider the existence and non-existence results concerning non-constant positive steady states (patterns) of the system. We demonstrate that cross-diffusion can create non-constant positive steady-state solutions.  相似文献   

4.
Abstract Population features inferred from single‐species, age‐structured models are compared to those inferred from a multispecies, age‐structured model that includes predator‐prey interactions among three commercially harvested fish species—walleye pollock, Atka mackerel, and Pacific cod—on the Aleutian Shelf, Alaska. The multispecies framework treats the single‐species models and data as a special case of the multispecies model and data. The same data from fisheries and surveys are used to estimate model parameters for both single‐species and multispecies configurations of the model. Additionally, data from stomach samples and predator rations are used to estimate the parameters of the multispecies model. One form of the feeding functional response, predator pre‐emption, was selected using AIC from seven alternative models for how the predation rate changes with the densities of prey and possibly other predators. Differences in estimated population dynamics and productivity between the multispecies and single‐species models were observed. The multispecies model estimated lower mackerel population sizes from 1964–2003 than the single‐species model, while the spawning biomass of pollock was estimated to have declined more than three times faster since 1964 by the multispecies model. The variances around the estimates of spawning biomass were smaller for mackerel and larger for pollock in the multispecies model compared to the single‐species model.  相似文献   

5.
The control and management of chaotic population is one of the main objectives for constructing mathematical model in ecology today. In this paper, we apply a technique of controlling chaotic predator–prey population dynamics by supplying additional food to top-predator. We formulate a three species predator–prey model supplying additional food to top-predator. Existence conditions and local stability criteria of equilibrium points are determined analytically. Persistence conditions for the system are derived. Global stability conditions of interior equilibrium point is calculated. Theoretical results are verified through numerical simulations. Phase diagram is presented for various quality and quantity of additional food. One parameter bifurcation analysis is done with respect to quality and quantity of additional food separately keeping one of them fixed. Using MATCONT package, we derive the bifurcation scenarios when both the parameters quality and quantity of additional food vary together. We predict the existence of Hopf point (H), limit point (LP) and branch point (BP) in the model for suitable supply of additional food. We have computed the regions of different dynamical behaviour in the quantity–quality parametric plane. From our study we conclude that chaotic population dynamics of predator prey system can be controlled to obtain regular population dynamics only by supplying additional food to top predator. This study is aimed to introduce a new non-chemical chaos control mechanism in a predator–prey system with the applications in fishery management and biological conservation of prey predator species.  相似文献   

6.
Abstract The study of three‐species communities have become the focus of considerable attention, and because the studies of ecological communities start with their food web, we consider a tritrophic food chain model comprised of the prey, the predator, and the super‐predator. The classical assumption of the domino effect is supplemented with an adaptive parameter for the predator (in the absence of prey). Thus, the model exhibits an equilibrium with the predator‐top‐predator steady state, which is a saddle point. Dynamical behaviors such as boundedness, existence of periodic orbits, persistence, as well as stability are analyzed. The long‐term coexistence of the three interacting species is addressed, and the stability analysis of the model shows that the biologically most relevant equilibrium point is globally asymptotically stable whenever it satisfies a certain criterion. Practical implications are explored and related to real populations.  相似文献   

7.
This work provides a mathematical model for a predator‐prey system with general functional response and recruitment, which also includes capture on both species, and analyzes its qualitative dynamics. The model is formulated considering a population growth based on a general form of recruitment and predator functional response, as well as the capture on both prey and predators at a rate proportional to their populations. In this sense, it is proved that the dynamics and bifurcations are determined by a two‐dimensional threshold parameter. Finally, numerical simulations are performed using some ecological observations on two real species, which validate the theoretical results obtained. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
In this short note, we study a strongly coupled system of partial differential equations which models the dynamics of a two‐predator‐one‐prey ecosystem in which the prey exercises defense switching and the predators collaboratively take advantage of the prey's strategy. We prove the existence of global strong solutions. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
The paper explores an eco‐epidemiological model of a predator–prey type, where the prey population is subject to infection. The model is basically a combination of S‐I type model and a Rosenzweig–MacArthur predator–prey model. The novelty of this contribution is to consider different competition coefficients within the prey population, which leads to the emergent carrying capacity. We explicitly separate the competition between non‐infected and infected individuals. This emergent carrying capacity is markedly different to the explicit carrying capacities that have been considered in many eco‐epidemiological models. We observed that different intra‐class and inter‐class competition can facilitate the coexistence of susceptible prey‐infected prey–predator, which is impossible for the case of the explicit carrying capacity model. We also show that these findings are closely associated with bi‐stability. The present system undergoes bi‐stability in two different scenarios: (a) bi‐stability between the planner equilibria where susceptible prey co‐exists with predator or infected prey and (b) bi‐stability between co‐existence equilibrium and the planner equilibrium where susceptible prey coexists with infected prey; have been discussed. The conditions for which the system is to be permanent and the global stability of the system around disease‐free equilibrium are worked out. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A theoretical eco‐epidemiological model of a prey–predator interaction system with disease in prey species is studied. Predator consumes both susceptible and infected prey population, but predator also feeds preferentially on many numerous species, which are over represented in the predator's diet. Equilibrium points of the system are determined, and the dynamic behaviour of the system is investigated around equilibrium points. Death rate of predator species is considered as a bifurcation parameter to examine the occurrence of Hopf bifurcation in the neighbourhood of the coexisting equilibria. Numerical simulations are carried out to support the analytical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Since intraguild predation (IGP) is a ubiquitous and important community module in nature and Allee effect has strong impact on population dynamics, in this paper we propose a three-species IGP food web model consisted of the IG predator, IG prey and basal prey, in which the basal prey follows a logistic growth with strong Allee effect. We investigate the local and global dynamics of the model with emphasis on the impact of strong Allee effect. First, positivity and boundedness of solutions are studied. Then existence and stability of the boundary and interior equilibria are presented and the Hopf bifurcation curve at an interior equilibrium is given. The existence of a Hopf bifurcation curve indicates that if competition between the IG prey and IG predator for the basal resource lies below the curve then the interior equilibrium remains stable, while if it lies above the curve then the interior equilibrium loses its stability. In order to explore the impact of Allee effect, the parameter space is classified into sixteen different regions and, in each region, the number of interior equilibria is determined and the corresponding bifurcation diagrams on the Allee threshold are given. The extinction parameter regions of at least one species and the necessary coexistence parameter regions of all three species are provided. In addition, we explore possible dynamical patterns, i.e., the existence of multiple attractors. By theoretical analysis and numerical simulations, we show that the model can have one (i.e. extinction of all species), two (i.e. bi-stability) or three (i.e. tri-stability) attractors. It is also found by simulations that when there exists a unique stable interior equilibrium, the model may generate multiple attracting periodic orbits and the coexistence of all three species is enhanced as the competition between the IG prey and IG predator for the basal resource is close to the Hopf bifurcation curve from below. Our results indicate that the intraguild predation food web model exhibits rich and complex dynamic behaviors and strong Allee effect in the basal prey increases the extinction risk of not only the basal prey but also the IG prey or/and IG predator.  相似文献   

12.
An optimal control problem is studied for an ecosystem composed by one predator and two prey populations. Its dynamics is modelled by a reaction–diffusion system of Volterra type. Two control variables are introduced in the system; their meaning is the mixture rates between predator and each prey population. The goal of this paper is to maximize the total density of the three populations at a fixed time moment. The existence of the optimal control is established and necessary optimality conditions are found with the aid of a maximum principle.  相似文献   

13.
A predator–prey model was extended to include nonlinear harvesting of the predator guided by its population, such that harvesting is only implemented if the predator population exceeds an economic threshold. The proposed model is a nonsmooth dynamic system with switches between the original predator-prey model (free subsystem) and a model with nonlinear harvesting (harvesting subsystem). We initially examine the dynamics of both the free and the harvesting subsystems, and then we investigate the dynamics of the switching system using theories of nonsmooth systems. Theoretical results showed that the harvesting subsystem undergoes multiple bifurcations, including saddle-node, supercritical Hopf, Bogdanov–Takens and homoclinic bifurcations. The switching system not only retains all of the complex dynamics of the harvesting system but also exhibits much richer dynamics such as a sliding equilibrium, sliding cycle, boundary node (saddle point) bifurcation, boundary saddle-node bifurcation and buckling bifurcation. Both theoretical and numerical results showed that, by implementing predator population guided harvesting, the predator and prey population could coexist in more scenarios than those in which the predator may go extinct for the continuous harvesting regime. They could either stabilize at an equilibrium or oscillate periodically depending on the value of the economic threshold and the initial value of the system.  相似文献   

14.
In this paper, we investigate the dynamics of a time‐delay ratio‐dependent predator‐prey model with stage structure for the predator. This predator‐prey system conforms to the realistically biological environment. The existence and stability of the positive equilibrium are thoroughly analyzed, and the sufficient and necessary conditions for the stability and instability of the positive equilibrium are obtained for the case without delay. Then, the influence of delay on the dynamics of the system is investigated using the geometric criterion developed by Beretta and Kuang. 26 We show that the positive steady state can be destabilized through a Hopf bifurcation and there exist stability switches under some conditions. The formulas determining the direction and the stability of Hopf bifurcations are explicitly derived by using the center manifold reduction and normal form theory. Finally, some numerical simulations are performed to illustrate and expand our theoretical results.  相似文献   

15.
The Bogdanov‐Takens bifurcations of a Leslie‐Gower predator‐prey model with Michaelis‐Menten–type prey harvesting were studied. In the paper “Diff. Equ. Dyn. Syst. 20(2012), 339‐366,” Gupta et al proved that the Leslie‐Gower predator‐prey model with Michaelis‐Menten–type prey harvesting has rich dynamics. Some equilibria of codimension 1 and their bifurcations were discussed. In this paper, we find that the model has an equilibrium of codimensions 2 and 3. We also prove analytically that the model undergoes Bogdanov‐Takens bifurcations (cusp cases) of codimensions 2 and 3. Hence, the model can have 2 limit cycles, coexistence of a stable homoclinic loop and an unstable limit cycle, supercritical and subcritical Hopf bifurcations, and homoclinic bifurcation of codimension 1 as the values of parameters vary. Moreover, several numerical simulations are conducted to illustrate the validity of our results.  相似文献   

16.
In this paper we analyze a delay-induced predator–prey–parasite model with prey harvesting, where the predator–prey interaction is represented by Leslie–Gower type model with type II functional response. Infection is assumed to spread horizontally from one infected prey to another susceptible prey following mass action law. Spreading of disease is not instantaneous but mediated by a time lag to take into account the time required for incubation process. Both the susceptible and infected preys are subjected to linear harvesting. The analysis is accomplished in two phases. First we analyze the delay-induced predator–prey–parasite system in absence of harvesting and proved the local & global dynamics of different (six) equilibrium points. It is proved that the delay has no influence on the stability of different equilibrium points except the interior one. Delay may cause instability in an otherwise stable interior equilibrium point of the system and larger delay may even produce chaos if the infection rate is also high. In the second phase, we explored the dynamics of the delay-induced harvested system. It is shown that harvesting of prey population can suppress the abrupt fluctuations in the population densities and can stabilize the system when it exceeds some threshold value.  相似文献   

17.
Complex spatiotemporal dynamics of a diffusive predator-prey system involving additional food supply to predator and intra-specific competition among predator, are investigated. We establish critical conditions of the occurrence of Turing instability, which are necessary and sufficient. Furthermore, we also establish conditions of the occurrence of codimension-2 Turing-Hopf bifurcation and Turing-Turing bifurcation, by exploring interactions of Turing bifurcations and Hopf bifurcation. For Turing-Hopf bifurcation, by analyzing normal form truncated to order 3 which are derived by applying normal form method, it is shown that under proper conditions, diffusive predator-prey system generates interesting spatial, temporal and spatiotemporal patterns, including a pair of spatially inhomogeneous steady states, a spatially homogeneous periodic solution and a pair of spatially inhomogeneous periodic solutions. And numerical simulations are also shown to support theory analysis. Moreover, it is found that proper intra-specific competition among predator helps generate complex spatiotemporal dynamics. And, proper additional food supply to predator helps control the population fluctuations of predator and prey, while large quantity and high quality of additional food supply will lead to the extinction of prey and make predator change the source of food, which finally destroy the ecosystem. These investigations might help understand complex spatiotemporal dynamics of predator-prey system involving additional food supply to predator and intra-specific competition among predator, and help conserve species in an ecosystem via supplying suitable additional food.  相似文献   

18.
In a natural ecosystem, specialist predators feed almost exclusively on one specific species of prey which may be possible for a parasitoid. But generalist predators feed on many types of species. It is also well known that the predation rate increases as prey density rises, but eventually levels off due to the predator’s handling time. The response function, thereby, is often assumed to Holling II functional response. In addition, digestion processes of the predation often involve reactions with delays. In view of these facts, a three-species ecosystem with a delay digestion process and Holling functional response is formulated. By analyzing the corresponding characteristic equations, the stability of the equilibria is investigated. Furthermore, Hopf bifurcations occurring at the positive equilibrium under some conditions are demonstrated. The consequence of global stability of the positive equilibrium is that predation will not irreversibly change the system. That is, as long as preys are not made extinct by excessive predation of their predator, the system is able to recover. Numerical simulations are carried out to illustrate our theoretical results. Meanwhile, they indicate that time delay is harmless for permanence of populations even thought it has a tendency to produce oscillations.  相似文献   

19.
In this investigation, we offer and examine a predator–prey interacting model with prey refuge in proportion to both the species and Beddington–DeAngelis functional response. We first prove the well-posedness of the temporal and spatiotemporal models which are restricted in a positive invariant region. Then for the temporal model, we analyse its temporal dynamics including uniform boundedness, permanence, stability of all feasible non-negative equilibria and show that refugia can induce periodic oscillation via Hopf bifurcation around the unique positive equilibrium; for the spatiotemporal model, we not only investigate its permanence, stability of non-negative constant steady states and Turing instability but also study the existence and non-existence of non-constant positive steady states by Leray–Schauder degree theory. The key observation is that the coefficient of refuge cooperates a significant part in modifying the dynamics of the current system and mediates the population permanence, stability of coexisting equilibrium and even the Turing instability parameter space. Finally, general numerical simulation consequences are given to illustrate the validity of the theoretical results. Through numerical simulations, one observes that the model dynamics shows prey refugia and self-diffusion control spatiotemporal pattern growth to spots, stripe–spot mixtures and stripes reproduction. The outcomes assign that the dynamics of the model with prey refuge is not simple, but rich and complex. Additionally, numerical simulations show that the other model parameters have an important effect on species’ spatially inhomogeneous distribution, which results in the formation of spots pattern, mixture of spots and stripes pattern, mixture of spots, stripes and rings pattern and anti-spot pattern. This may improve the model dynamics of the prey refuge on the reaction–diffusion predator–prey system.  相似文献   

20.
In this study, we consider a mathematical model of two competing prey and one predator system where the prey species follow Lotka–Volterra‐type dynamics and the predator uptake functions are ratio dependent. We have derived the conditions for existence of different boundary equilibria and discussed their global behaviour. The sufficient condition for permanent co‐existence of all the species is derived. Finally, we have discussed the possibility of extinction of the species from the system. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号