首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The control and management of chaotic population is one of the main objectives for constructing mathematical model in ecology today. In this paper, we apply a technique of controlling chaotic predator–prey population dynamics by supplying additional food to top-predator. We formulate a three species predator–prey model supplying additional food to top-predator. Existence conditions and local stability criteria of equilibrium points are determined analytically. Persistence conditions for the system are derived. Global stability conditions of interior equilibrium point is calculated. Theoretical results are verified through numerical simulations. Phase diagram is presented for various quality and quantity of additional food. One parameter bifurcation analysis is done with respect to quality and quantity of additional food separately keeping one of them fixed. Using MATCONT package, we derive the bifurcation scenarios when both the parameters quality and quantity of additional food vary together. We predict the existence of Hopf point (H), limit point (LP) and branch point (BP) in the model for suitable supply of additional food. We have computed the regions of different dynamical behaviour in the quantity–quality parametric plane. From our study we conclude that chaotic population dynamics of predator prey system can be controlled to obtain regular population dynamics only by supplying additional food to top predator. This study is aimed to introduce a new non-chemical chaos control mechanism in a predator–prey system with the applications in fishery management and biological conservation of prey predator species.  相似文献   

2.
Since intraguild predation (IGP) is a ubiquitous and important community module in nature and Allee effect has strong impact on population dynamics, in this paper we propose a three-species IGP food web model consisted of the IG predator, IG prey and basal prey, in which the basal prey follows a logistic growth with strong Allee effect. We investigate the local and global dynamics of the model with emphasis on the impact of strong Allee effect. First, positivity and boundedness of solutions are studied. Then existence and stability of the boundary and interior equilibria are presented and the Hopf bifurcation curve at an interior equilibrium is given. The existence of a Hopf bifurcation curve indicates that if competition between the IG prey and IG predator for the basal resource lies below the curve then the interior equilibrium remains stable, while if it lies above the curve then the interior equilibrium loses its stability. In order to explore the impact of Allee effect, the parameter space is classified into sixteen different regions and, in each region, the number of interior equilibria is determined and the corresponding bifurcation diagrams on the Allee threshold are given. The extinction parameter regions of at least one species and the necessary coexistence parameter regions of all three species are provided. In addition, we explore possible dynamical patterns, i.e., the existence of multiple attractors. By theoretical analysis and numerical simulations, we show that the model can have one (i.e. extinction of all species), two (i.e. bi-stability) or three (i.e. tri-stability) attractors. It is also found by simulations that when there exists a unique stable interior equilibrium, the model may generate multiple attracting periodic orbits and the coexistence of all three species is enhanced as the competition between the IG prey and IG predator for the basal resource is close to the Hopf bifurcation curve from below. Our results indicate that the intraguild predation food web model exhibits rich and complex dynamic behaviors and strong Allee effect in the basal prey increases the extinction risk of not only the basal prey but also the IG prey or/and IG predator.  相似文献   

3.
The paper explores an eco‐epidemiological model of a predator–prey type, where the prey population is subject to infection. The model is basically a combination of S‐I type model and a Rosenzweig–MacArthur predator–prey model. The novelty of this contribution is to consider different competition coefficients within the prey population, which leads to the emergent carrying capacity. We explicitly separate the competition between non‐infected and infected individuals. This emergent carrying capacity is markedly different to the explicit carrying capacities that have been considered in many eco‐epidemiological models. We observed that different intra‐class and inter‐class competition can facilitate the coexistence of susceptible prey‐infected prey–predator, which is impossible for the case of the explicit carrying capacity model. We also show that these findings are closely associated with bi‐stability. The present system undergoes bi‐stability in two different scenarios: (a) bi‐stability between the planner equilibria where susceptible prey co‐exists with predator or infected prey and (b) bi‐stability between co‐existence equilibrium and the planner equilibrium where susceptible prey coexists with infected prey; have been discussed. The conditions for which the system is to be permanent and the global stability of the system around disease‐free equilibrium are worked out. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, a predator–prey Leslie–Gower model with disease in prey has been developed. The total population has been divided into three classes, namely susceptible prey, infected prey and predator population. We have also incorporated an infected prey refuge in the model. We have studied the positivity and boundedness of the solutions of the system and analyzed the existence of various equilibrium points and stability of the system at those equilibrium points. We have also discussed the influence of the infected prey refuge on each population density. It is observed that a Hopf bifurcation may occur about the interior equilibrium taking refuge parameter as bifurcation parameter. Our analytical findings are illustrated through computer simulation using MATLAB, which show the reliability of our model from the eco-epidemiological point of view.  相似文献   

5.
ABSTRACT. The population dynamics in a food chain are derived from a sequence of short‐run equilibria of an ecosystem where predator species demand prey biomass, supply own biomass to their predators and are assumed to behave as if they maximize net biomass intake. Introducing prices as scarcity indicators for the biomass of each species enables us to determine a short‐run ecosystem equilibrium guided by prices. Equilibrium regimes differ with respect to their mix of zero‐priced (= abundant) and positive‐priced (= scarce) species. The population dynamics turn out to vary with the prevailing equilibrium regime. Our analysis yields a richer and more complex population dynamics than the traditional predator‐prey dynamics of the Lotka‐Volterra type.  相似文献   

6.
To explore the impact of pest‐control strategy through a fractional derivative, we consider three predator‐prey systems by simple modification of Rosenzweig‐MacArthur model. First, we consider fractional‐order Rosenzweig‐MacArthur model. Allee threshold phenomena into pest population is considered for the second case. Finally, we consider additional food to the predator and harvesting in prey population. The main objective of the present investigation is to observe which model is most suitable for the pest control. To achieve this goal, we perform the local stability analysis of the equilibrium points and observe the basic dynamical properties of all the systems. We observe fractional‐order system has the ability to stabilize Rosenzweig‐MacArthur model with low pest density from oscillatory state. In the numerical simulations, we focus on the bistable regions of the second and third model, and we also observe the effect of the fractional order α throughout the stability region of the system. For the third model, we observe a saddle‐node bifurcation due to the additional food and Allee effect to the pest densities. Also, we numerically plot two parameter bifurcation diagram with respect to the harvesting parameter and fractional order of the system. We finally conclude that fractional‐order Rosenzweig‐MacArthur model and the modified Rosenzweig‐MacArthur model with additional food for the predator and harvested pest population are more suitable models for the pest management.  相似文献   

7.
The article aims to study the basic dynamical features of a modified Holling–Tanner prey–predator model with ratio‐dependent functional response. We have proved the global existence of the solution for the deterministic model. The parametric restriction for persistence of both species is also obtained along with the proof of local asymptotic stability of the interior equilibrium point(s). Conditions for local bifurcations of interior equilibrium points are provided. The global dynamic behavior is examined thoroughly with supportive numerical simulation results. Next, we have formulated the stochastic model by perturbing the intrinsic growth rates of prey and predator populations with white noise terms. The existence uniqueness of solutions for stochastic model is established. Further, we have derived the parametric restrictions required for the persistence of the stochastic model. Finally, we have discussed the stochastic stability results in terms of the first and second order moments. Numerical simulation results are provided to support the analytical findings. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we consider a predator–prey model with herd behavior and prey‐taxis subject to the homogeneous Neumann boundary condition. First, by analyzing the characteristic equation, the local stability of the positive equilibrium is discussed. Then, choosing prey‐tactic sensitivity coefficient as the bifurcation parameter, we obtain a branch of nonconstant solutions bifurcating from the positive equilibrium by an abstract bifurcation theory, and find the stable bifurcating solutions near the bifurcation point under suitable conditions. We have shown that prey‐taxis can destabilize the uniform equilibrium and yields the occurrence of spatial patterns. Furthermore, some numerical simulations to illustrate the theoretical analysis are also carried out, Turing patterns such as spots pattern, spots–strip pattern, strip pattern, stable nonconstant steady‐state solutions, and spatially inhomogeneous periodic solutions are obtained, which also expand our theoretical results.  相似文献   

9.
The present paper deals with the problem of a classical predator–prey system with infection of prey population. A classical predator–prey system is split into three groups, namely susceptible prey, infected prey and predator. The relative removal rate of the susceptible prey due to infection is worked out. We observe the dynamical behaviour of this system around each of the equilibria and point out the exchange of stability. It is shown that local asymptotic stability of the system around the positive interior equilibrium ensures its global asymptotic stability. We prove that there is always a Hopf bifurcation for increasing transmission rate. To substantiate the analytical findings, numerical experiments have been carried out for hypothetical set of parameter values. Our analysis shows that there is a threshold level of infection below which all the three species will persist and above which the disease will be epidemic. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
In real world bio‐communities, predational choice plays a key role to the persistence of the prey population. Predator's ‘sense’ of choice for predation towards the infected and noninfected prey is an important factor for those bio‐communities. There are examples where the predator can distinguish the infected prey and avoids those at the time of predation. Based on the examples, we propose two mathematical models and observe the dynamics of the systems around biologically feasible equilibria. For disease‐selective predation model there is a high risk of prey extinction. On the other hand, for non‐disease selective predation both populations co‐exist. Local stability analysis and global stability analysis of the positive interior equilibrium are performed. Moreover, conditions for the permanence of the system are obtained. Finally, we conclude that strictly disease‐selective predation may not be acceptable for the persistence of the prey population. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
A tri‐trophic food chain model in a two‐patch environment is considered. Although tri‐trophic food chain model is well studied, the study considering migration of middle predator is lacking. To the best of our knowledge, the present investigation is the first study in this direction. Both prey and predator density‐dependent migrations are considered to observe the effects on stability and persistence of the system. We observe that migration of middle predator has the ability to control chaos in tri‐trophic food chain model. Our results indicate that the chance of predator extinction enhances for prey density‐dependent middle predator migration. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
A model food chain involving a specialist and a generalist predator is proposed and studied. One of the salient features of this model food chain is that it combines both the schemes (Volterra and Leslie) of modeling predator–prey interaction in one system in such a way that the demerits of these individual formulations are suppressed and the resulting model system represents a common unit of real world food webs. The stability analysis of the proposed model is carried out. The Hopf bifurcation conditions of the positive equilibrium point are established. Our numerical computations show that chaotic dynamics is sensitive to changes in values of parameters measuring attributes of either interacting populations or their environments. Two dimensional parameter scans suggest that the model food chain displays short-term recurrent chaos. This can be regarded as a plausible explanation for why it has been so difficult to detect deterministic chaos in natural populations.  相似文献   

13.
In this work, a modified Leslie–Gower predator–prey model is analyzed, considering an alternative food for the predator and a ratio‐dependent functional response to express the species interaction. The system is well defined in the entire first quadrant except at the origin ( 0 , 0 ) . Given the importance of the origin ( 0 , 0 ) as it represents the extinction of both populations, it is convenient to provide a continuous extension of the system to the origin. By changing variables and a time rescaling, we obtain a polynomial differential equations system, which is topologically equivalent to the original one, obtaining that the non‐hyperbolic equilibrium point ( 0 , 0 ) in the new system is a repellor for all parameter values. Therefore, our novel model presents a remarkable difference with other models using ratio‐dependent functional response. We establish conditions on the parameter values for the existence of up to two positive equilibrium points; when this happen, one of them is always a hyperbolic saddle point, and the other can be either an attractor or a repellor surrounded by at least one limit cycle. We also show the existence of a separatrix curve dividing the behavior of the trajectories in the phase plane. Moreover, we establish parameter sets for which a homoclinic curve exits, and we show the existence of saddle‐node bifurcation, Hopf bifurcation, Bogdanov–Takens bifurcation, and homoclinic bifurcation. An important feature in this model is that the prey population can go to extinction; meanwhile, population of predators can survive because of the consumption of alternative food in the absence of prey. In addition, the prey population can attain their carrying capacity level when predators go to extinction. We demonstrate that the solutions are non‐negatives and bounded (dissipativity and permanence of population in many other works). Furthermore, some simulations to reinforce our mathematical results are shown, and we further discuss their ecological meanings. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
Intraguild predation is ubiquitous in many ecological communities. This paper is concerned with a stochastic three species prey-predator model with intraguild predation. The model involves a prey, an intermediate predator which preys on only prey and an omnivorous top predator which preys on both prey and intermediate predator. First, we show the existence of a unique positive global solution of the model. Then we mainly establish the sufficient conditions for the extinction and persistence in the mean of each population. Moreover, we show that the model is stable in distribution. Finally, some numerical simulations are given to illustrate the main results.  相似文献   

15.
In this paper, we investigate the dynamics of a time‐delay ratio‐dependent predator‐prey model with stage structure for the predator. This predator‐prey system conforms to the realistically biological environment. The existence and stability of the positive equilibrium are thoroughly analyzed, and the sufficient and necessary conditions for the stability and instability of the positive equilibrium are obtained for the case without delay. Then, the influence of delay on the dynamics of the system is investigated using the geometric criterion developed by Beretta and Kuang. 26 We show that the positive steady state can be destabilized through a Hopf bifurcation and there exist stability switches under some conditions. The formulas determining the direction and the stability of Hopf bifurcations are explicitly derived by using the center manifold reduction and normal form theory. Finally, some numerical simulations are performed to illustrate and expand our theoretical results.  相似文献   

16.
A three dimensional ecoepidemiological model consisting of susceptible prey, infected prey and predator is proposed and analysed in the present work. The parameter delay is introduced in the model system for considering the time taken by a susceptible prey to become infected. Mathematically we analyze the dynamics of the system such as, boundedness of the solutions, existence of non-negative equilibria, local and global stability of interior equilibrium point. Next we choose delay as a bifurcation parameter to examine the existence of the Hopf bifurcation of the system around its interior equilibrium. Moreover we use the normal form method and center manifold theorem to investigate the direction of the Hopf bifurcation and stability of the bifurcating limit cycle. Some numerical simulations are carried out to support the analytical results.  相似文献   

17.
In this paper, we discuss a predator–prey model with the Beddington–DeAngelis functional response of predators and a disease in the prey species. At first we study permanence and global stability of a positive equilibrium for the deterministic version of the model. Then we include a stochastic perturbation of the white noise type. We analyse the influence of this stochastic perturbation on the systems and prove that the positive equilibrium is also globally asymptotically stable in this case. The key point of our analysis is to choose appropriate Lyapunov functionals. We point out the differences between the deterministic and stochastic versions of the model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
In recent years, prey–predator models appearing in various fields of mathematical biology have been proposed and studied extensively due to their universal existence and importance. In this paper, we introduce a fractional-order prey–predator model and deals with the mathematical behaviors of the model. The dynamical behavior of the system is investigated from the point of view of local stability. We also carry out a detailed analysis on the stability of equilibrium. Numerical simulations are presented to illustrate the results.  相似文献   

19.
A theoretical eco‐epidemiological model of a prey–predator interaction system with disease in prey species is studied. Predator consumes both susceptible and infected prey population, but predator also feeds preferentially on many numerous species, which are over represented in the predator's diet. Equilibrium points of the system are determined, and the dynamic behaviour of the system is investigated around equilibrium points. Death rate of predator species is considered as a bifurcation parameter to examine the occurrence of Hopf bifurcation in the neighbourhood of the coexisting equilibria. Numerical simulations are carried out to support the analytical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
The paper explores an eco-epidemiological model with weak Allee in predator, and the disease in the prey population. We consider a predator-prey model with type II functional response. The curiosity of this paper is to consider different competition coefficients within the prey population, which leads to the emergent carrying capacity. We perform the local and global stability analysis of the equilibrium points and the Hopf bifurcation analysis around the endemic equilibrium point. Further we pay attention to the chaotic dynamics which is produced by disease. Our numerical simulations reveal that the three species eco-epidemiological system without weak-Allee induced chaos from stable focus for increasing the force of infection, whereas in the presence of the weak-Allee effect, it exhibits stable solution. We conclude that chaotic dynamics can be controlled by the Allee parameter as well as the competition coefficients. We apply basic tools of non-linear dynamics such as Poincare section and maximum Lyapunov exponent to identify chaotic behavior of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号