首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Let R be a prime ring, with no nonzero nil right ideal, Q the two-sided Martindale quotient ring of R, F a generalized derivation of R, L a noncommutative Lie ideal of R, and b ∈ Q. If, for any u, w ∈ L, there exists n = n(u, w) ≥1 such that (F(uw) ? bwu)n = 0, then one of the following statements holds:
  1. F = 0 and b = 0;

  2. R ? M2(K), the ring of 2 × 2 matrices over a field K, b2 = 0, and F(x) = ?bx, for all x ∈ R.

  相似文献   

2.
Let R be a noncommutative prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid C, and f(x1,…, xn) be a multilinear polynomial over C, which is not central valued on R. Suppose that F and G are two generalized derivations of R and d is a nonzero derivation of R such that d(F(f(r))f(r) ? f(r)G(f(r))) = 0 for all r = (r1,…, rn) ∈ Rn, then one of the following holds:
  1. There exist a, p, q, c ∈ U and λ ∈C such that F(x) = ax + xp + λx, G(x) = px + xq and d(x) = [c, x] for all x ∈ R, with [c, a ? q] = 0 and f(x1,…, xn)2 is central valued on R;

  2. There exists a ∈ U such that F(x) = xa and G(x) = ax for all x ∈ R;

  3. There exist a, b, c ∈ U and λ ∈C such that F(x) = λx + xa ? bx, G(x) = ax + xb and d(x) = [c, x] for all x ∈ R, with b + αc ∈ C for some α ∈C;

  4. R satisfies s4 and there exist a, b ∈ U and λ ∈C such that F(x) = λx + xa ? bx and G(x) = ax + xb for all x ∈ R;

  5. There exist a′, b, c ∈ U and δ a derivation of R such that F(x) = ax + xb ? δ(x), G(x) = bx + δ(x) and d(x) = [c, x] for all x ∈ R, with [c, a′] = 0 and f(x1,…, xn)2 is central valued on R.

  相似文献   

3.
Let R be a non-commutative prime ring of characteristic different from 2, U its right Utumi quotient ring, C its extended centroid, F a generalized derivation on R, and f(x 1,…, x n ) a noncentral multilinear polynomial over C. If there exists a ∈ R such that, for all r 1,…, r n  ∈ R, a[F 2(f(r 1,…, r n )), f(r 1,…, r n )] = 0, then one of the following statements hold: 1. a = 0;

2. There exists λ ∈C such that F(x) = λx, for all x ∈ R;

3. There exists c ∈ U such that F(x) = cx, for all x ∈ R, with c 2 ∈ C;

4. There exists c ∈ U such that F(x) = xc, for all x ∈ R, with c 2 ∈ C.

  相似文献   

4.
Ming-Chu Chou 《代数通讯》2013,41(2):898-911
Let R be a prime ring, L a noncentral Lie ideal of R, and a ∈ R. Set [x, y]1 = [x, y] = xy ? yx for x, y ∈ R and inductively [x, y]k = [[x, y]k?1, y] for k > 1. Suppose that δ is a nonzero σ-derivation of R such that a[δ(x), x]k = 0 for all x ∈ L, where σ is an automorphism of R and k is a fixed positive integer. Then a = 0 except when char R = 2 and R ? M2(F), the 2 × 2 matrix ring over a field F.  相似文献   

5.
Let R be a prime ring of characteristic different from 2, U its right Utumi quotient ring, C its extended centroid and L a not central Lie ideal of R. Suppose that F, G and H are generalized derivations of R, with F≠0, such that F(G(x)x?xH(x)) = 0, for any xL. In this paper we describe all possible forms of F, G and H.  相似文献   

6.
Let ? be a prime ring, 𝒞 the extended centroid of ?, ? a Lie ideal of ?, F be a nonzero generalized skew derivation of ? with associated automorphism α, and n ≥ 1 be a fixed integer. If (F(xy) ? yx) n  = 0 for all x, y ∈ ?, then ? is commutative and one of the following statements holds:

(1) Either ? is central;

(2) Or ? ? M 2(𝒞), the 2 × 2 matrix ring over 𝒞, with char(𝒞) = 2.  相似文献   

7.
Jui-Chi Chang 《代数通讯》2013,41(6):2241-2248
Let R be a prime ring with center Z and L a noncommutative Lie ideal of R. Suppose that f is a right generalized β-derivation of R associated with a β-derivation δ such that f(x) n  ∈ Z for all x ∈ L, where n is a fixed positive integer. Then f = 0 unless dim  C RC = 4.  相似文献   

8.
《代数通讯》2013,41(10):5003-5010
Abstract

Let R be a prime ring of characteristic different from 2, d a non-zero derivation of R, I a non-zero right ideal of R, a ∈ R, S 4(x 1,…, x 4) the standard polynomial in 4 variables. Suppose that, for any x, y ∈ I, a[d([x, y]), [x, y]] = 0. If S 4(I, I, I, I)I ≠ 0, then aI = ad(I) = 0.  相似文献   

9.
Let R be any commutative ring with identity, and let C be a (finite or infinite) cyclic group. We show that the group ring R(C) is presimplifiable if and only if its augmentation ideal I(C) is presimplifiable. We conjecture that the group rings R(C n ) are presimplifiable if and only if n = p m , p ∈ J(R), p is prime, and R is presimplifiable. We show the necessity of n = p m , and we prove the sufficiency when n = 2, 3, 4. These results were made possible by a new formula derived herein for the circulant determinantal coefficients.  相似文献   

10.
Abstract

Let A be a commutative ring with identity, let X, Y be indeterminates and let F(X,Y), G(X, Y) ∈ A[X, Y] be homogeneous. Then the pair F(X, Y), G(X, Y) is said to be radical preserving with respect to A if Rad((F(x, y), G(x, y))R) = Rad((x,y)R) for each A-algebra R and each pair of elements x, y in R. It is shown that infinite sequences of pairwise radical preserving polynomials can be obtained by homogenizing cyclotomic polynomials, and that under suitable conditions on a ?-graded ring A these can be used to produce an infinite set of homogeneous prime ideals between two given homogeneous prime ideals P ? Q of A such that ht(Q/P) = 2.  相似文献   

11.
We apply elementary matrix computations and the theory of differential identities to prove the following: let R be a prime ring with extended centroid C and L a noncommutative Lie ideal of R. Suppose that f?:?L?→?R is a map and g is a generalized derivation of R such that [f(x),?g(y)]?=?[x,?y] for all x,?y?∈?L. Then there exist a nonzero α?∈?C and a map μ?:?L?→?C such that g(x)?=?αx for all x?∈?R and f(x)?=?α?1 x?+?μ(x) for all x?∈?L, except when R???M 2(F), the 2?×?2 matrix ring over a field F.  相似文献   

12.
Cihat Abdioğlu 《代数通讯》2017,45(4):1741-1756
Let R be a noncommutative prime ring with extended centroid C and maximal left ring of quotients Qml(R). The aim of the paper is to study a basic functional identity concerning bi-additive maps on R. Precisely, it is proved that a bi-additive map B:R×RQml(R) satisfying [B(x,y),[x,y]] = 0 for all x,yR must be of the form (x,y)?λ[x,y]+μ(x,y) for x,yR, where λ∈C and μ:R×RC is a bi-additive map. As applications to the theorem, Jordan σ-biderivations with σ an epimorphism and additive commuting maps on noncommutative Lie ideals of R are characterized.  相似文献   

13.
Asma Ali  Faiza Shujat 《代数通讯》2013,41(9):3699-3707
Let K be a commutative ring with unity, R a prime K-algebra of characteristic different from 2, U the right Utumi quotient ring of R, f(x 1,…, x n ) a noncentral multilinear polynomial over K, and G a nonzero generalized derivation of R. Denote f(R) the set of all evaluations of the polynomial f(x 1,…, x n ) in R. If [G(u)u, G(v)v] = 0, for any u, v ∈ f(R), we prove that there exists c ∈ U such that G(x) = cx, for all x ∈ R and one of the following holds: 1. f(x 1,…, x n )2 is central valued on R;

2. R satisfies s 4, the standard identity of degree 4.

  相似文献   

14.
Frank Loose 《代数通讯》2013,41(7):2395-2416
Abstract

A ring R is called left P-injective if for every a ∈ R, aR = r(l(a)) where l? ) and r? ) denote left and right annihilators respectively. The ring R is called left GP-injective if for any 0 ≠ a ∈ R, there exists n > 0 such that a n  ≠ 0 and a n R = r(l(a n )). As a response to an open question on GP -injective rings, an example of a left GP-injective ring which is not left P-injective is given. It is also proved here that a ring R is left FP -injective if and only if every matrix ring 𝕄 n (R) is left GP-injective.  相似文献   

15.
Let R be a reduced commutative ring with 1 ≠ 0. Let R E be the set of equivalence classes for the equivalence relation on R given by x ~ y if and only if ann R (x) = ann R (y). Then R E is a (meet) semilattice with respect to the order [x] ≤ [y] if and only if ann R (y) ? ann R (x). In this paper, we investigate when R E is a lattice and relate this to when R is weakly complemented or satisfies the annihilator condition. We also consider when R is a (meet) semilattice with respect to the Abian order defined by x ≤ y if and only if xy = x 2.  相似文献   

16.
Let R be a noncommutative prime ring and d, δ two nonzero derivations of R. If δ([d(x), x] n ) = 0 for all x ∈ R, then char R = 2, d 2 = 0, and δ = αd, where α is in the extended centroid of R. As an application, if char R ≠ 2, then the centralizer of the set {[d(x), x] n  | x ∈ R} in R coincides with the center of R.  相似文献   

17.
ABSTRACT

Let R be a prime ring with a nonzero derivation d and let f(X 1,…,X t ) be a multilinear polynomial over C, the extended centroid of R. Suppose that b[d(f(x 1,…,x t )), f(x 1,…,x t )] n  = 0 for all x i  ∈ R, where 0 ≠ b ∈ R and n is a fixed positive integer. Then f(X 1,…,X t ) is centrally valued on R unless char R = 2 and dim C RC = 4. We prove a more generalized version by replacing R with a left ideal.  相似文献   

18.
Tsiu-Kwen Lee 《代数通讯》2013,41(12):5195-5204
Let R be a prime ring which is not commutative, with maximal symmetric ring of quotients Q ms (R), and let τ be an anti-automorphism of R. An additive map δ: R → Q ms (R) is called a Jordan τ-derivation if δ(x 2) = δ(x)x τ + xδ(x) for all x ∈ R. A Jordan τ-derivation of R is called X-inner if it is of the form x → ax τ ? xa for x ∈ R, where a ∈ Q ms (R). It is proved that any Jordan τ-derivation of R is X-inner if either R is not a GPI-ring or R is a PI-ring except when charR = 2 and dim  C RC = 4, where C is the extended centroid of R.  相似文献   

19.
Let R be a semiprime ring with symmetric Martindale quotient ring Q, n ≥ 2 and let f(X) = X n h(X), where h(X) is a polynomial over the ring of integers with h(0) = ±1. Then there is a ring decomposition Q = Q 1Q 2Q 3 such that Q 1 is a ring satisfying S 2n?2, the standard identity of degree 2n ? 2, Q 2 ? M n (E) for some commutative regular self-injective ring E such that, for some fixed q > 1, x q  = x for all x ∈ E, and Q 3 is a both faithful S 2n?2-free and faithful f-free ring. Applying the theorem, we characterize m-power commuting maps, which are defined by linear generalized differential polynomials, on a semiprime ring.  相似文献   

20.
The commuting graph of a ring R, denoted by Γ(R), is a graph whose vertices are all noncentral elements of R and two distinct vertices are joint by an edge whenever they commute. It is conjectured that if R is a ring with identity such that Γ(R) ≈ Γ(M n (F)), for a finite field F and n ≥ 2, then RM n (F). Here we prove this conjecture when n = 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号