首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Let w(x, y) be a word in two variables and 𝔚 the variety determined by w. In this paper we raise the following question: if for every pair of elements a, b in a group G there exists g ∈ G such that w(a g , b) = 1, under what conditions does the group G belong to 𝔚? In particular, we consider the n-Engel word w(x, y) = [x, n y]. We show that in this case the property is satisfied when the group G is metabelian. If n = 2, then we extend this result to the class of all solvable groups.  相似文献   

2.
Dan Levy 《代数通讯》2013,41(11):4144-4154
Let G be a finite group, and let p 1,…, p m be the distinct prime divisors of |G|. Given a sequence 𝒫 =P 1,…, P m , where P i is a Sylow p i -subgroup of G, and g ∈ G, denote by m 𝒫(g) the number of factorizations g = g 1g m such that g i  ∈ P i . Previously, it was shown that the properly normalized average of m 𝒫 over all 𝒫 is a complex character over G termed the Average Sylow Multiplicity Character. The present article identifies the kernel of this character as the subgroup of G consisting of all g ∈ G such that m 𝒫(gx) = m 𝒫(x) for all 𝒫 and all x ∈ G. This result implies a close connection between the kernel and the solvable radical of G.  相似文献   

3.
Raimundo Bastos 《代数通讯》2013,41(10):4177-4184
Let m, n be positive integers. Suppose that G is a residually finite group in which for every element x ∈ G there exists a positive integer q = q(x) ≤ m such that xq is left n-Engel. We show that G is locally virtually nilpotent. Further, let w be a multilinear commutator and G a residually finite group in which for every product of at most 896 w-values x there exists a positive integer q = q(x) dividing m such that xq is left n-Engel. Then w(G) is locally virtually nilpotent.  相似文献   

4.
Let R be a noncommutative prime ring and I a nonzero left ideal of R. Let g be a generalized derivation of R such that [g(r k ), r k ] n  = 0 for all r ∈ I, where k, n are fixed positive integers. Then there exists c ∈ U, the left Utumi quotient ring of R, such that g(x) = xc and I(c ? α) = 0 for a suitable α ∈ C. In particular we have that g(x) = α x, for all x ∈ I.  相似文献   

5.
Let G be any group and x an automorphism of G. The automorphism x is said to be nil if, for every gG, there exists n = n(g) such that [g, n x] = 1. If n can be chosen independently of g, we say that x is n-unipotent. A nil (resp. unipotent) automorphism x could also be seen as a left Engel element (resp. left n-Engel element) in the group Gx〉. When G is a finite dimensional vector space, groups of unipotent linear automorphisms turn out to be nilpotent, so that one might ask to what extent this result can be extended to a more general setting. In this paper we study finitely generated groups of nil or unipotent automorphisms of groups with residual properties (e.g. locally graded groups, residually finite groups, profinite groups), proving that such groups are nilpotent.  相似文献   

6.
Let G be a group and Aut(G) be the group of automorphisms of G. Then the Acentralizer of an automorphism α ∈Aut(G) in G is defined as C G (α) = {g ∈ G∣α(g) = g}. For a finite group G, let Acent(G) = {C G (α)∣α ∈Aut(G)}. Then for any natural number n, we say that G is n-Acentralizer group if |Acent(G)| =n. We show that for any natural number n, there exists a finite n-Acentralizer group and determine the structure of finite n-Acentralizer groups for n ≤ 5.  相似文献   

7.
8.
Let R be a noncommutative prime ring, U be the left Utumi quotient ring of R, and k, m, n, r be fixed positive integers. If there exist a generalized derivation G and a derivation g (which is independent of G) of R such that [G(xm)xn + xng(xm), xr]k = 0, for all x ∈ R, then there exists a ∈ U such that G(x) = ax, for all x ∈ R. As a consequence of the result in the present article, one may obtain Theorem 1 in Demir and Argaç [10 Demir, Ç., Argaç, N. (2010). A result on generalized derivations with Engel conditions on one-sided ideals. J. Korean Math. Soc. 47(3):483494.[Crossref], [Web of Science ®] [Google Scholar]].  相似文献   

9.
Bijan Taeri 《代数通讯》2013,41(3):894-922
Let n be an integer greater than 1. A group G is said to be n-rewritable whenever for every n elements x 1,…,x n of G, there exist distinct permutations τ, σ on the set {1,2,…, n} such that x τ(1) ··· x τ(n) = x σ (1) ··· x σ (n). In this article, we complete the classification of 3-rewritable finite nilpotent groups and prove that a finite nilpotent group G is 3-rewritable if and only if G has an abelian subgroup of index 2 or the derived subgroup has order < 6.  相似文献   

10.
Let G be a finite simple graph on a vertex set V(G) = {x 11,…, x n1}. Also let m 1,…, m n  ≥ 2 be integers and G 1,…, G n be connected simple graphs on the vertex sets V(G i ) = {x i1,…, x im i }. In this article, we provide necessary and sufficient conditions on G 1,…, G n for which the graph obtained by attaching the G i to G is unmixed or vertex decomposable. Then we characterize Cohen–Macaulay and sequentially Cohen–Macaulay graphs obtained by attaching the cycle graphs or connected chordal graphs to arbitrary graphs.  相似文献   

11.
George Szeto 《代数通讯》2013,41(12):3979-3985
Let B be a Galois algebra over a commutative ring R with Galois group G such that B H is a separable subalgebra of B for each subgroup H of G. Then it is shown that B satisfies the fundamental theorem if and only if B is one of the following three types: (1) B is an indecomposable commutative Galois algebra, (2) B = Re ⊕ R(1 ? e) where e and 1 ? e are minimal central idempotents in B, and (3) B is an indecomposable Galois algebra such that for each separable subalgebra A, V B (A) = ?∑ gG(A) J g , and the centers of A and B G(A) are the same where V B (A) is the commutator subring of A in B, J g  = {b ∈ B | bx = g(x)b for each x ∈ B} for a g ∈ G, and G(A) = {g ∈ G | g(a) = a for all a ∈ A}.  相似文献   

12.
13.
Let G be a finite graph on the vertex set [d] = {1,…, d} with the edges e 1,…, e n and K[t] = K[t 1,…, t d ] the polynomial ring in d variables over a field K. The edge ring of G is the semigroup ring K[G] which is generated by those monomials t e  = t i t j such that e = {i, j} is an edge of G. Let K[x] = K[x 1,…, x n ] be the polynomial ring in n variables over K, and define the surjective homomorphism π: K[x] → K[G] by setting π(x i ) = t e i for i = 1,…, n. The toric ideal I G of G is the kernel of π. It will be proved that, given integers f and d with 6 ≤ f ≤ d, there exists a finite connected nonbipartite graph G on [d] together with a reverse lexicographic order <rev on K[x] and a lexicographic order <lex on K[x] such that (i) K[G] is normal with Krull-dim K[G] = d, (ii) depth K[x]/in<rev (I G ) = f and K[x]/in<lex (I G ) is Cohen–Macaulay, where in<rev (I G ) (resp., in<lex (I G )) is the initial ideal of I G with respect to <rev (resp., <lex) and where depth K[x]/in<rev (I G ) is the depth of K[x]/in<rev (I G ).  相似文献   

14.
Let G be a 2-edge-connected simple graph, and let A denote an abelian group with the identity element 0. If a graph G * is obtained by repeatedly contracting nontrivial A-connected subgraphs of G until no such a subgraph left, we say G can be A-reduced to G*. A graph G is bridged if every cycle of length at least 4 has two vertices x, y such that d G (x, y) < d C (x, y). In this paper, we investigate the group connectivity number Λ g (G) = min{n: G is A-connected for every abelian group with |A| ≥ n} for bridged graphs. Our results extend the early theorems for chordal graphs by Lai (Graphs Comb 16:165–176, 2000) and Chen et al. (Ars Comb 88:217–227, 2008).  相似文献   

15.
Let R be a noncommutative prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid C, and f(x1,…, xn) be a multilinear polynomial over C, which is not central valued on R. Suppose that F and G are two generalized derivations of R and d is a nonzero derivation of R such that d(F(f(r))f(r) ? f(r)G(f(r))) = 0 for all r = (r1,…, rn) ∈ Rn, then one of the following holds:
  1. There exist a, p, q, c ∈ U and λ ∈C such that F(x) = ax + xp + λx, G(x) = px + xq and d(x) = [c, x] for all x ∈ R, with [c, a ? q] = 0 and f(x1,…, xn)2 is central valued on R;

  2. There exists a ∈ U such that F(x) = xa and G(x) = ax for all x ∈ R;

  3. There exist a, b, c ∈ U and λ ∈C such that F(x) = λx + xa ? bx, G(x) = ax + xb and d(x) = [c, x] for all x ∈ R, with b + αc ∈ C for some α ∈C;

  4. R satisfies s4 and there exist a, b ∈ U and λ ∈C such that F(x) = λx + xa ? bx and G(x) = ax + xb for all x ∈ R;

  5. There exist a′, b, c ∈ U and δ a derivation of R such that F(x) = ax + xb ? δ(x), G(x) = bx + δ(x) and d(x) = [c, x] for all x ∈ R, with [c, a′] = 0 and f(x1,…, xn)2 is central valued on R.

  相似文献   

16.
Asma Ali  Faiza Shujat 《代数通讯》2013,41(9):3699-3707
Let K be a commutative ring with unity, R a prime K-algebra of characteristic different from 2, U the right Utumi quotient ring of R, f(x 1,…, x n ) a noncentral multilinear polynomial over K, and G a nonzero generalized derivation of R. Denote f(R) the set of all evaluations of the polynomial f(x 1,…, x n ) in R. If [G(u)u, G(v)v] = 0, for any u, v ∈ f(R), we prove that there exists c ∈ U such that G(x) = cx, for all x ∈ R and one of the following holds: 1. f(x 1,…, x n )2 is central valued on R;

2. R satisfies s 4, the standard identity of degree 4.

  相似文献   

17.
Every difference equation x n+1 = f n (x n ,x n ? 1,…,x n ? k ) of order k+1 with each mapping f n being homogeneous of degree 1 on a group G is shown to be equivalent to a system consisting of an equation of order k and a linear equation of order 1.  相似文献   

18.
M. Asaad 《代数通讯》2013,41(11):4217-4224
Let G be a finite group. A subgroup K of a group G is called an ?-subgroup of G if N G (K) ∩ K x  ≦ K for all x ? G. The set of all ?-subgroups of G will be denoted by ?(G). Let P be a nontrivial p-group. A chain of subgroups 1 = P 0 ? P 1 ? ··· ? P n  = P is called a maximal chain of P provided that |P i : P i?1| = p, i = 1, 2, ···, n. A nontrivial p-subgroup P of G is called weakly supersolvably embedded in G if P has a maximal chain 1 = P 0 ? P 1 ? ··· ? P i  ? ··· ? P n  = P such that P i  ? ?(G) for i = 1, 2, ···, n. Using the concept of weakly supersolvably embedded, we obtain new characterizations of p-nilpotent and supersolvable finite groups.  相似文献   

19.
Let K be an infinite field of characteristic different from 2, and G a group. Under suitable restrictions upon G, we classify the groups such that the symmetric units of KG satisfy the solvability identity (x 1, x 2,…, x 2 n ) o  = 1, for some n.  相似文献   

20.
Let G be a finite group and let r?. An r-coloring of G is any mapping χ:G→{1,…,r}. Colorings χ and ψ are equivalent if there exists gG such that χ(xg?1) = ψ(x) for every xG. A coloring χ is symmetric if there exists gG such that χ(gx?1g) = χ(x) for every xG. Let Sr(G) denote the number of symmetric r-colorings of G and sr(G) the number of equivalence classes of symmetric r-colorings of G. We count Sr(G) and sr(G) in the case where G is the dihedral group Dn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号