首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《代数通讯》2013,41(5):1417-1425
ABSTRACT

Let n be an integer greater than 1. A group G is said to be n-rewritable (or a Qn-group) if for every n elements x1, x2,…,xn in G there exist distinct permutations σ and τ in Sn such that xσ(1)xσ (2) ??? xσ(n) = xτ(1)xτ(2) ??? xτ(n). In this paper, we characterize all 3-rewritable nilpotent 2-groups of class 2. Also we have found a bound for the nilpotency class of certain nilpotent 3-rewritable groups, and have shown that 3-rewritable groups satisfy a certain law.  相似文献   

2.
M. Asaad 《代数通讯》2013,41(11):4217-4224
Let G be a finite group. A subgroup K of a group G is called an ?-subgroup of G if N G (K) ∩ K x  ≦ K for all x ? G. The set of all ?-subgroups of G will be denoted by ?(G). Let P be a nontrivial p-group. A chain of subgroups 1 = P 0 ? P 1 ? ··· ? P n  = P is called a maximal chain of P provided that |P i : P i?1| = p, i = 1, 2, ···, n. A nontrivial p-subgroup P of G is called weakly supersolvably embedded in G if P has a maximal chain 1 = P 0 ? P 1 ? ··· ? P i  ? ··· ? P n  = P such that P i  ? ?(G) for i = 1, 2, ···, n. Using the concept of weakly supersolvably embedded, we obtain new characterizations of p-nilpotent and supersolvable finite groups.  相似文献   

3.
M. I. Elashiry 《代数通讯》2013,41(6):2132-2138
For any integer n ≥ 2, a group G is said to have the n-rewritable property R n if every infinite subset X of G contains n elements x 1,…, x n such that the product x 1x n  = x σ(1)x σ(n) for some permutation σ ≠ 1. We show here that if G satisfies R n , then G has a subgroup N of finite index with a finite central subgroup A of N such that the exponent of (N/A)/Z(N/A) is finite and has size bounded by (n ? 1)!. This extends the main result in [4 Curzio , M. , Longobardi , P. , Maj , M. , Rhemtulla , A. ( 1992 ). Groups with many rewritable products . Proc. AMS. 115 ( 4 ): 931934 .[Crossref], [Web of Science ®] [Google Scholar]] which asserts that a group G is an R n group for some integer n if and only if G has a normal subgroup F such that G/F is finite, F is an FC-group, and the exponent of F/Z(F) is finite.  相似文献   

4.
We associate a graph 𝒩 G with a group G (called the non-nilpotent graph of G) as follows: take G as the vertex set and two vertices are adjacent if they generate a non-nilpotent subgroup. In this article, we study the graph theoretical properties of 𝒩 G and its induced subgraph on G \ nil(G), where nil(G) = {x ∈ G | ? x, y ? is nilpotent for all y ∈ G}. For any finite group G, we prove that 𝒩 G has either |Z*(G)| or |Z*(G)| +1 connected components, where Z*(G) is the hypercenter of G. We give a new characterization for finite nilpotent groups in terms of the non-nilpotent graph. In fact, we prove that a finite group G is nilpotent if and only if the set of vertex degrees of 𝒩 G has at most two elements.  相似文献   

5.
6.
Raimundo Bastos 《代数通讯》2013,41(10):4177-4184
Let m, n be positive integers. Suppose that G is a residually finite group in which for every element x ∈ G there exists a positive integer q = q(x) ≤ m such that xq is left n-Engel. We show that G is locally virtually nilpotent. Further, let w be a multilinear commutator and G a residually finite group in which for every product of at most 896 w-values x there exists a positive integer q = q(x) dividing m such that xq is left n-Engel. Then w(G) is locally virtually nilpotent.  相似文献   

7.
Let L be a relatively free nilpotent Lie algebra over ? of rank n and class c, with n ≥ 2; freely generated by a set 𝒵. Give L the structure of a group, denoted by R, by means of the Baker–Campbell–Hausdorff formula. Let G be the subgroup of R generated by the set 𝒵 and N Aut(L)(G) the normalizer in Aut(L) of the set G. We prove that the automorphism group of L is generated by GL n (?) and N Aut(L)(G). Let H be a subgroup of finite index in Aut(G) generated by the tame automorphisms and a finite subset X of IA-automorphisms with cardinal s. We construct a set Y consisting of s + 1 IA-automorphisms of L such that Aut(L) is generated by GL n (?) and Y. We apply this particular method to construct generating sets for the automorphism groups of certain relatively free nilpotent Lie algebras.  相似文献   

8.
Jiakuan Lu 《代数通讯》2013,41(10):3726-3732
A subgroup H of a finite group G is called a QTI-subgroup if C G (x) ≤ N G (H) for any 1 ≠ x ∈ H. In this article, the finite groups all of whose second maximal subgroup are QTI-subgroups are classified.  相似文献   

9.
We associate a graph Γ G to a nonlocally cyclic group G (called the noncyclic graph of G) as follows: take G\ Cyc(G) as vertex set, where Cyc(G) = {x ? G| 〈x, y〉 is cyclic for all y ? G}, and join two vertices if they do not generate a cyclic subgroup. We study the properties of this graph and we establish some graph theoretical properties (such as regularity) of this graph in terms of the group ones. We prove that the clique number of Γ G is finite if and only if Γ G has no infinite clique. We prove that if G is a finite nilpotent group and H is a group with Γ G  ? Γ H and |Cyc(G)| = |Cyc(H)| = 1, then H is a finite nilpotent group. We give some examples of groups G whose noncyclic graphs are “unique”, i.e., if Γ G  ? Γ H for some group H, then G ? H. In view of these examples, we conjecture that every finite nonabelian simple group has a unique noncyclic graph. Also we give some examples of finite noncyclic groups G with the property that if Γ G  ? Γ H for some group H, then |G| = |H|. These suggest the question whether the latter property holds for all finite noncyclic groups.  相似文献   

10.
For any integer n ≠ 0,1, a group G is said to be “n-Bell” if it satisfies the identity [x n ,y] = [x,y n ]. It is known that if G is an n-Bell group, then the factor group G/Z 2(G) has finite exponent dividing 12n 5(n ? 1)5. In this article we show that this bound can be improved. Moreover, we prove that every n-Bell group is n-nilpotent; consequently, using results of Baer on finite n-nilpotent groups, we give the structure of locally finite n-Bell groups. Finally, we are concerned with locally graded n-Bell groups for special values of n.  相似文献   

11.
《代数通讯》2013,41(7):3287-3293
Abstract

For an element a of a group G,let S(a) denote the semigroup generated by all conjugates of a in G. We prove that if G is solvable of finite rank and 1 ? S(a) for all 1 ≠ a ∈ G,then ?a G ?/?b G ? is a periodic group for every b ∈ S(a). Conversely if every two generator subgroup of a finitely generated torsion-free solvable group G has this property then G has finite rank,and if every finitely generated subgroup has this property then every partial order on G can be extended to a total order.  相似文献   

12.
《代数通讯》2013,41(12):4785-4794
Abstract

Let ω(G) denote the number of orbits on the finite group G under the action of Aut(G). Using the classification of finite simple groups, we prove that for any positive integer n, there is only a finite number of (non-abelian) finite simple groups G satisfying ω(G) ≤ n. Then we classify all finite simple groups G such that ω(G) ≤ 17. The latter result was obtained by computational means, using the computer algebra system GAP.  相似文献   

13.
Let G be a finite graph on the vertex set [d] = {1,…, d} with the edges e 1,…, e n and K[t] = K[t 1,…, t d ] the polynomial ring in d variables over a field K. The edge ring of G is the semigroup ring K[G] which is generated by those monomials t e  = t i t j such that e = {i, j} is an edge of G. Let K[x] = K[x 1,…, x n ] be the polynomial ring in n variables over K, and define the surjective homomorphism π: K[x] → K[G] by setting π(x i ) = t e i for i = 1,…, n. The toric ideal I G of G is the kernel of π. It will be proved that, given integers f and d with 6 ≤ f ≤ d, there exists a finite connected nonbipartite graph G on [d] together with a reverse lexicographic order <rev on K[x] and a lexicographic order <lex on K[x] such that (i) K[G] is normal with Krull-dim K[G] = d, (ii) depth K[x]/in<rev (I G ) = f and K[x]/in<lex (I G ) is Cohen–Macaulay, where in<rev (I G ) (resp., in<lex (I G )) is the initial ideal of I G with respect to <rev (resp., <lex) and where depth K[x]/in<rev (I G ) is the depth of K[x]/in<rev (I G ).  相似文献   

14.
Frieder Ladisch 《代数通讯》2013,41(8):2883-2894
We study finite groups G with elements g such that |C G (g)| = |G:G′|. (Such elements generalize fixed-point-free automorphisms of finite groups.) We show that these groups have a unique conjugacy class of nilpotent supplements for the commutator subgroup and, using the classification of finite simple groups, that these groups are solvable.  相似文献   

15.
Let G be a finite simple graph on a vertex set V(G) = {x 11,…, x n1}. Also let m 1,…, m n  ≥ 2 be integers and G 1,…, G n be connected simple graphs on the vertex sets V(G i ) = {x i1,…, x im i }. In this article, we provide necessary and sufficient conditions on G 1,…, G n for which the graph obtained by attaching the G i to G is unmixed or vertex decomposable. Then we characterize Cohen–Macaulay and sequentially Cohen–Macaulay graphs obtained by attaching the cycle graphs or connected chordal graphs to arbitrary graphs.  相似文献   

16.
Let K be a field of characteristic zero. For a torsion-free finitely generated nilpotent group G, we naturally associate four finite dimensional nilpotent Lie algebras over K, ? K (G), grad(?)(? K (G)), grad(g)(exp ? K (G)), and L K (G). Let 𝔗 c be a torsion-free variety of nilpotent groups of class at most c. For a positive integer n, with n ≥ 2, let F n (𝔗 c ) be the relatively free group of rank n in 𝔗 c . We prove that ? K (F n (𝔗 c )) is relatively free in some variety of nilpotent Lie algebras, and ? K (F n (𝔗 c )) ? L K (F n (𝔗 c )) ? grad(?)(? K (F n (𝔗 c ))) ? grad(g)(exp ? K (F n (𝔗 c ))) as Lie algebras in a natural way. Furthermore, F n (𝔗 c ) is a Magnus nilpotent group. Let G 1 and G 2 be torsion-free finitely generated nilpotent groups which are quasi-isometric. We prove that if G 1 and G 2 are relatively free of finite rank, then they are isomorphic. Let L be a relatively free nilpotent Lie algebra over ? of finite rank freely generated by a set X. Give on L the structure of a group R, say, by means of the Baker–Campbell–Hausdorff formula, and let H be the subgroup of R generated by the set X. We show that H is relatively free in some variety of nilpotent groups; freely generated by the set X, H is Magnus and L ? ??(H) ? L ?(H) as Lie algebras. For relatively free residually torsion-free nilpotent groups, we prove that ? K and L K are isomorphic as Lie algebras. We also give an example of a finitely generated Magnus nilpotent group G, not relatively free, such that ??(G) is not isomorphic to L ?(G) as Lie algebras.  相似文献   

17.
Jiakuan Lu  Wei Meng 《代数通讯》2017,45(5):2043-2046
For a finite group G, let n(G) denote the number of conjugacy classes of non-subnormal subgroups of G. In this paper, we show that a finite group G satisfying n(G)≤2|π(G)| is solvable, and for a finite non-solvable group G, n(G) = 2|π(G)|+1 if and only if G?A5.  相似文献   

18.
《代数通讯》2013,41(9):2957-2975
ABSTRACT

Let F m (N) be the free left nilpotent (of class two) Leibniz algebra of finite rank m, with m ≥ 2. We show that F m (N) has non-tame automorphisms and, for m ≥ 3, the automorphism group of F m (N) is generated by the tame automorphisms and one more non-tame IA-automorphism. Let F(N) be the free left nilpotent Leibniz algebra of rank greater than 1 and let G be an arbitrary non-trivial finite subgroup of the automorphism group of F(N). We prove that the fixed point subalgebra F(N) G is not finitely generated.  相似文献   

19.
Let G be a finite p-group of order p n and ?(G) be the subgroup of the tensor square of G generated by all symbols x ? x, for all x in G. In the present article, we construct an upper bound for the order of ?(G) and any extra special p-group. It is also shown that ?(G) ? ?(G/G′). Using our result, we obtain the explicit structure of the tensor square of G and π3 SK(G, 1). Finally, the structure of G will be characterized when the bound is attained.  相似文献   

20.
M. Asaad 《代数通讯》2013,41(3):1034-1040
Let G be a finite group. A subgroup H of a group G is said to be c-supplemented in G if there exists a subgroup K of G such that G = HK and H ∩ K ≤ H G , where H G  = Core G (H) is the largest normal subgroup of G contained in H. In this article, we investigate the structure of a finite group G under the assumption that subgroups of prime order are c-supplemented in G. Moreover, we analyze the structure of a group G when the minimal subgroups of the generalized Fitting subgroup F?(G) of G are c-supplemented in G through the theory of formations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号