首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 158 毫秒
1.
Matrix-valued dynamical systems are an important class of systems that can describe important processes such as covariance/second-order moment processes, or processes on manifolds and Lie Groups. We address here the case of processes that leave the cone of positive semidefinite matrices invariant, thereby including covariance and second-order moment processes. Both the continuous-time and the discrete-time cases are first considered. In the LTV case, the obtained stability and stabilization conditions are expressed as differential and difference Lyapunov conditions which are equivalent, in the LTI case, to some spectral conditions for the generators of the processes. Convex stabilization conditions are also obtained in both the continuous-time and the discrete-time setting. It is proven that systems with constant delays are stable provided that the systems with zero-delays are stable—which mirrors existing results for linear positive systems. The results are then extended and unified into an impulsive formulation for which similar results are obtained. The proposed framework is very general and can recover and/or extend many of the existing results in the literature on linear systems related to (mean-square) exponential (uniform) stability. Several examples are discussed to illustrate this claim by deriving stability conditions for stochastic systems driven by Brownian motion and Poissonian jumps, Markov jump systems, (stochastic) switched systems, (stochastic) impulsive systems, (stochastic) sampled-data systems, and all their possible combinations.  相似文献   

2.
In this paper, a general class of impulsive delayed switched systems is considered. By employing the Lyapunov–Razumikhin method and some analysis techniques, we established several global asymptotic stability and global exponential stability criteria for the considered impulsive delayed switched systems, which improve and extend some recent works. As an application, the result of global exponential stability are used to study a class of uncertain linear switched systems with time‐varying delays. Several LMI‐based conditions are proposed to guarantee the global robust stability and global exponential stabilization. The designed memoryless state feedback controller can be easily checked by the LMI toolbox in Matlab. Moreover, the dwell time constraint is imposed for the switching law. Finally, two numerical examples and their simulations are given to show the effectiveness of our proposed results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Linear Parameter-Varying (LPV) systems with jumps and piecewise differentiable parameters is a class of hybrid LPV systems for which no tailored stability analysis and stabilization conditions have been obtained so far.1 We fill this gap here by proposing an approach based on a clock- and parameter-dependent Lyapunov function yielding stability conditions under both constant and minimum dwell-times. Interesting adaptations of the latter result consist of a minimum dwell-time stability condition for uncertain LPV systems and LPV switched impulsive systems. The minimum dwell-time stability condition is notably shown to naturally generalize and unify the well-known quadratic and robust stability criteria all together. Those conditions are then adapted to address the stabilization problem via timer-dependent and a timer- and/or parameter-independent (i.e. robust) state-feedback controllers, the latter being obtained from a relaxed minimum dwell-time stability condition involving slack-variables. Finally, the last part addresses the stability of LPV systems with jumps under a range dwell-time condition which is then used to provide stabilization conditions for LPV systems using a sampled-data state-feedback gain-scheduled controller. The obtained stability and stabilization conditions are all formulated as infinite-dimensional semidefinite programming problems which are then solved using sum of squares programming. Examples are given for illustration.  相似文献   

4.
研究了一类带有随机丢包的非周期采样网络化控制系统的镇定问题.不同于传统观点往往将时滞看作系统稳定性的消极因素,考虑时间滞后对系统稳定性的积极影响, 并提出一个新颖的主动时间滞后控制方法来镇定该系统.为了分析时间滞后控制的积极作用并获得较低保守性的结论,首先把带随机丢包的非周期采样系统建模为带固定切换率的随机脉冲切换系统, 并在均方意义下提出一个新的分离引理用于分析随机脉冲切换系统的稳定性.然后,基于环 泛函方法和所提的分离引理,以线性矩阵不等式形式给出随机脉冲切换系统的均方稳定性判据.进一步,利用区间分割技术得到改进的均方稳定性判据.最后,利用一个经典的数值例子来验证所得稳定判据的有效性和所提方法的优势.  相似文献   

5.
This paper considers the problem of fixed-time stability (FTS) for switched nonlinear time-varying (NTV) systems. Firstly, three sufficient conditions are proposed to verify the FTS of NTV systems by using the improved Lyapunov function, which has a tighter upper bound of time derivative. Then, two FTS conditions are given for the switched NTV system by extending the obtained results, moreover, a switching strategy is also provided by using the minimum dwell time method. Finally, the obtained results are extended to study the FTS of impulsive NTV systems. Comparing with the existing results, the obtained conditions have two improvements: (1) provides a more accurate estimate for the upper bound of settling time of NTV systems, and (2) allows the Lyapunov function to increase at the switching instant of switched NTV (or impulsive NTV) systems. Two numerical examples are given to illustrate the theoretical results.  相似文献   

6.
A problem of state output feedback stabilization of discrete-time stochastic systems with multiplicative noise under Markovian switching is considered. Under some appropriate assumptions, the stability of this system under pure impulsive control is given. Further under hybrid impulsive control, the output feedback stabilization problem is investigated. The hybrid control action is formulated as a combination of the regular control along with an impulsive control action. The jump Markovian switching is modeled by a discrete-time Markov chain. The control input is simultaneously applied to both the stochastic and the deterministic terms. Sufficient conditions based on stochastic semi-definite programming and linear matrix inequalities (LMIs) for both stochastic stability and stabilization are obtained. Such a nonconvex problem is solved using the existing optimization algorithms and the nonconvex CVX package. The robustness of the stability and stabilization concepts against all admissible uncertainties are also investigated. The parameter uncertainties we consider here are norm bounded. Two examples are given to demonstrate the obtained results.  相似文献   

7.
This paper studies the asymptotic stability problem for a class of impulsive switched systems with time invariant delays based on linear matrix inequality (LMI) approach. Some sufficient conditions, which are independent of time delays and impulsive switching intervals, for ensuring asymptotical stability of these systems are derived by using a Lyapunov–Krasovskii technique. Moreover, some appropriate feedback controllers, which can stabilize the closed-loop systems, are constructed. Illustrative examples are presented to show the effectiveness of the results obtained.  相似文献   

8.
This paper studies time-delayed switched systems that include both stable and unstable modes. By using multiple Lyapunov-functions technique and a dwell-time approach, several criteria on exponential stability for both linear and nonlinear systems are established. It is shown that by suitably controlling the switching between the stable and unstable modes, exponential stabilization of the switched system can be achieved. Some examples and numerical simulations are provided to illustrate our results.  相似文献   

9.
In this paper, the problems of asymptotical stability and stabilization of a class of switched neutral control systems are investigated. A delay-dependent stability criterion is formulated in term of linear matrix inequalities (LMIs) by using quadratic Lyapunov functions and inequality analysis technique. The corresponding switching rule is obtained through dividing the state space properly. Also, the synthesis of stabilizing state-feedback controllers are done such that the close-loop system is asymptotically stable. Two numerical examples are given to show the proposed method.  相似文献   

10.
This paper addresses the stability problem of delayed nonlinear positive switched systems whose subsystems are all positive. Both discrete-time systems and continuous-time systems are studied. In our analysis, the delays in systems can be unbounded. Two conditions are established to test the local asymptotic stability of the considered systems. The method to compute the domains of attraction is also proposed provided that the system is locally asymptotically stable. When reduced to general nonlinear positive systems, that is, the considered switched system consists of only one mode, an interesting conclusion follows that the proposed nonlinear positive system is locally asymptotically stable for all admissible delays and nonnegative nonlinearities which satisfy an extra condition at the origin, if and only if the system represented by the linear part is asymptotically stable for all admissible delays. Finally, a numerical example is presented to illustrate the obtained results.  相似文献   

11.
The global uniform exponential stability of switched positive linear impulsive systems with time-varying delays and all unstable subsystems is studied in this paper, which includes two types of distributed time-varying delays and discrete time-varying delays. Switching behaviors dominating the switched systems can be either stabilizing and destabilizing in the new designed switching sequence. We design new linear programming algorithm process to find the feasible ratio of stabilizing switching behaviors, which can be compensated by unstable subsystems, destabilizing switching behaviors, and impulses. Speci cally, we add a kind of nonnegative impulses which is consistent with the switching behaviors for the systems. Employing a multiple co-positive Lyapunov-Krasovskii functional, we present several new sufficient stability criteria and design new switching sequence. Then, we apply the obtained stability criteria to the exponential consensus of linear delayed multi-agent systems, and obtain the new exponential consensus criteria. Three simulations are provided to demonstrate the proposed stability criteria.  相似文献   

12.
This paper investigates stability and stabilization of positive switched systems with mode-dependent average dwell time, which permits to each subsystem in the underlying systems to have its own average dwell time. First, by using the multiple linear copositive Lyapunov function, the stability analysis of continuous-time systems in the autonomous form is addressed based on the mode-dependent average dwell time switching strategy. Then, the stabilization of non-autonomous systems is considered. State-feedback controllers are constructed, and all the proposed conditions are solvable in terms of linear programming. The obtained results are also extended to discrete-time systems. Finally, the simulation examples are given to illustrate the correctness of the design. The switching strategy used in the paper seems to be more effective than the average dwell time switching by some comparisons.  相似文献   

13.
In this paper, we deal with stability analysis of a class of nonlinear switched discrete-time systems. Systems of the class appear in numerical simulation of continuous-time switched systems. Some linear matrix inequality type stability conditions, based on the common Lyapunov function approach, are obtained. It is shown that under these conditions the system remains stable for any switching law. The obtained results are applied to the analysis of dynamics of a discrete-time switched population model. Finally, a continuous state feedback control is proposed that guarantees the uniform ultimate boundedness of switched systems with uncertain nonlinearity and parameters.  相似文献   

14.
In this paper, we study the stability problems and L2‐gain analysis for switched singular linear systems with jumps. Based on the concept of average impulsive interval, some novel sufficient conditions on the stability and L2‐gain for switched singular linear systems with jumps are developed. Two examples are given to illustrate the effectiveness of the results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, the problem of the robust stabilization for a class of uncertain linear systems with multiple time-varying delays is investigated. The uncertainty is nonlinear time-varying and does not require a matching condition. A memoryless state-feedback controller for the robust stabilization of the system is proposed. Based on the Lyapunov method and the linear matrix inequality (LMI) approach, two sufficient conditions for the stability are derived. Two numerical examples are given to illustrate the proposed method.  相似文献   

16.
The problem of stabilization for wireless networked control system (NCS) with packet dropout and time delay is studied in this article. The impulsive control law for the NCS is defined with time delay and impulse. Using a switching model, the network‐induced imperfections can be treated as three switching subsystems. Therein, in the case of packet dropout, the control law use the previous state via the first‐order hold. The impulsive control law is designed using the switched system approach and the average dwell time method. The obtained sufficient conditions which can guarantee the exponential stability of switched system are in the form of linear matrix inequalities. Finally, a numerical example is used to demonstrate the merits and applicabilities of the proposed method. © 2015 Wiley Periodicals, Inc. Complexity 21: 291–299, 2016  相似文献   

17.
This paper is concerned with the problem of exponential stability for uncertain neutral switched systems with interval time-varying mixed delays and nonlinear perturbations. By using the average dwell time approach and the piecewise Lyapunov functional technique, some sufficient conditions are first proposed in terms of a set of linear matrix inequalities (LMIs), to guarantee the robustly exponential stability for the uncertain neutral switched systems, where the decay estimate is explicitly given to quantify the convergence rate. Three numerical examples are finally illustrated to show the effectiveness of the proposed method.  相似文献   

18.
19.
This paper deals with the problem of robust H state feedback stabilization for uncertain switched linear systems with state delay. The system under consideration involves time delay in the state, parameter uncertainties and nonlinear uncertainties. The parameter uncertainties are norm-bounded time-varying uncertainties which enter all the state matrices. The nonlinear uncertainties meet with the linear growth condition. In addition, the impulsive behavior is introduced into the given switched system, which results a novel class of hybrid and switched systems called switched impulsive control systems. Using the switched Lyapunov function approach, some sufficient conditions are developed to ensure the globally robust asymptotic stability and robust H disturbance attenuation performance in terms of certain linear matrix inequalities (LMIs). Not only the robustly stabilizing state feedback H controller and impulsive controller, but also the stabilizing switching law can be constructed by using the corresponding feasible solution to the LMIs. Finally, the effectiveness of the algorithms is illustrated with an example.  相似文献   

20.
This article considers the robust regulation problem for a class of constrained linear switched systems with bounded additive disturbances. The proposed solution extends the existing robust tube based model predictive control (RTBMPC) strategy for non-switched linear systems to switched systems. RTBMPC utilizes nominal model predictions, together with tightened sets constraints, to obtain a control policy that guarantees robust stabilization of the dynamic systems in presence of bounded uncertainties. In this work, similar to RTBMPC for non-switched systems, a disturbance rejection proportional controller is used to ensure that the closed loop trajectories of the switched linear system are bounded in a tube centered on the nominal system trajectories. To account for the uncertainty related to all sub-systems, the gain of this controller is chosen to simultaneously stabilize all switching dynamics. The switched system RTBMPC requires an on-line solution of a Mixed Integer Program (MIP), which is computationally expensive. To reduce the complexity of the MIP, a sub-optimal design with respect to the previous formulation is also proposed that uses the notion of a pre-terminal set in addition to the usual terminal set to ensure stability. The RTBMPC design with the pre-terminal set aids in determining the trade-off between the complexity of the control algorithm with the performance of the closed-loop system while ensuring robust stability. Simulation examples, including a Three-tank benchmark case study, are presented to illustrate features of the proposed MPC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号