首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider infinite Prandtl number convection with rotation which is the basic model in geophysical fluid dynamics. For the rotation free case, the rigorous analysis has been provided by Park (2005, 2007, revised for publication) [5], [6] and [25] under various boundary conditions. By thoroughly investigating we prove in this paper that the solutions bifurcate from the trivial solution u=0 to an attractor ΣR which consists of only one cycle of steady state solutions and is homeomorphic to S1. We also see how intensively the rotation inhibits the onset of convective motion. This bifurcation analysis is based on a new notion of bifurcation, called attractor bifurcation which was developed by Ma and Wang (2005); see [15].  相似文献   

2.
Motivated by the large number of solutions obtained when applying bifurcation algorithms to the Ornstein-Zernike (OZ) equation with the hypernetted chain (HNC) closure from liquid state theory, we provide existence and bifurcation results for a computationally-motivated version of the problem.We first establish the natural result that if the potential satisfies a short-range condition then a low-density branch of smooth solutions exists. We then consider the so-called truncated OZ HNC equation that is obtained when truncating the region occupied by the fluid in the original OZ equation to a finite ball, as is often done in the physics literature before applying a numerical technique.On physical grounds one expects to find one or two solution branches corresponding to vapour and liquid phases of the fluid. However, we are able to demonstrate the existence of infinitely many solution branches and bifurcation points at very low temperatures for the truncated one-dimensional problem provided that the potential is purely repulsive and homogeneous.  相似文献   

3.
We will be concerned with a two-dimensional mathematical model for a free elastic shell of biological cluster. The cluster boundary is connected with its kernel by elastic links. The inside part is filled with compressed gas or fluid. Equilibrium forms of the shell of biological cluster may be found as solutions of a certain nonlinear functional-differential equation with several physical parameters. For each multiparameter this equation has a radially symmetric solution. Our goal is to study the bifurcation which breaks symmetry. In order to establish critical values of bifurcation parameter and buckling modes we will investigate an appropriate linear problem. Our main result on the existence of symmetrybreaking bifurcation will be proved by the use of a variational version of the Crandall-Rabinowitz theorem.  相似文献   

4.
In this paper, we consider the stability of equilibria, Hopf and double Hopf bifurcation in Liu system with delay feedback. Firstly, we identify the critical values for stability switches and Hopf bifurcationusing the method of bifurcation analysis. When we choose appropriate feedback strength and delay, two symmetrical nontrivial equilibria of Liusystem can be controlled to be stable at the same time, and the stable bifurcating periodic solutions occur in the neighborhood of the two equilibria at the same time. Secondly, by applying the normal form method and center manifold theory,the normal form near the double Hopf bifurcation, as well as classifications of local dynamics are analyzed. Furthermore, we give the bifurcation diagram to illustrate numerically that a family of stable periodic solutions bifurcated from Hopf bifurcation occur in a large region of delay and the Liu system with delay can appear the phenomenon of ``chaos switchover''.  相似文献   

5.
We present a theorem ensuring the existence of local solution branches for one-parameter bifurcation problems in which the linearization at the trivial solution possesses a two-dimensional kernel. In particular, we provide a straightforward “test” that is sufficient for the existence of local solution continua. We demonstrate our abstract theorem with several concrete examples for second-order systems of elliptic partial differential equations with symmetry.  相似文献   

6.
In this paper, we study the dynamics of a diffusive equation with time delay subject to Dirichlet boundary condition in a bounded domain. The existence of spatially nonhomogeneous steady-state solution is investigated by applying Lyapunov–Schmidt reduction. The existence of Hopf bifurcation at the spatially nonhomogeneous steady-state solution is derived by analyzing the distribution of the eigenvalues. The direction of Hopf bifurcation and stability of the bifurcating periodic solution are also investigated by means of normal form theory and center manifold reduction. Moreover, we illustrate our general results by applications to the Nicholson’s blowflies models with one- dimensional spatial domain.  相似文献   

7.
The discrete-time predator–prey system obtained by Euler method is investigated. The conditions of existence for flip bifurcation and Hopf bifurcation are derived by using center manifold theorem and bifurcation theory. And numerical simulation results not only show the consistence with the theoretical analysis but also display the new and interesting dynamical behaviors, including period-3, 5, 6, 7, 8, 9, 10, 12, 18, 20, 22, 30, 39-orbits in different chaotic regions, attracting invariant circle, period-doubling bifurcation from period-10 leading to chaos, inverse period-doubling bifurcation from period-5 leading to chaos, interior crisis and boundary crisis, intermittency mechanic, onset of chaos suddenly and sudden disappearance of the chaotic dynamics, attracting chaotic set, and non-attracting chaotic set. In particular, we observe that when the prey is in chaotic dynamic, the predator can tend to extinction or to a stable equilibrium. The computations of Lyapunov exponents confirm the dynamical behaviors. The analysis and results in this paper are interesting in mathematics and biology.  相似文献   

8.
This paper investigates the nonlinear response and bifurcation of rotor with Squeezed Film Damper (SFD) supported on elastic foundation. The motion equations are derived. To analyze the bifurcation of nonlinear response of SFD rotor, the Floquet Multipliers is obtained by solving the perturbation equations with numerical method. For computing Floquet Multipliers, a novel method is presented in this paper, which can begin integration at the stable solution. Simulation results are given in two figures. One figure, which consists of eight subfigures, gives the effect of rotating speed on the response of SFD damper supported on elastic foundation: with increasing rotating speed, the nonlinear response evolves from quasi-period to period, then jumps between different periods, and finally returns to quasi-period; the corresponding bifurcations are saddle-node bifurcation and secondary Hopf bifurcation. The second figure, which consists of six subfigures, shows that: the support stiffness has large influence on the response of bearings and film force in SFD; large support stiffness can lead to oil whirl in SFD.  相似文献   

9.
In this paper we study bifurcations for a free boundary problem modeling the growth of multi-layer tumors under the action of inhibitors. An important feature of this problem is that the surface tension effect of the free boundary is taken into account. By reducing this problem into an abstract bifurcation equation in a Banach space, overcoming some technical difficulties and finally using the Crandall–Rabinowitz bifurcation theorem, we prove that this problem has infinitely many branches of bifurcation solutions bifurcating from the flat solution.  相似文献   

10.
Summary We provide a theoretical analysis of a Hopf bifurcation that can occur in systems with spherical geometry, based on the general theory of Hopf bifurcation in the presence of symmetry. In this particular bifurcation the imaginary eigenspace is a direct sum of two copies of the 5-dimensional irreducible representation of the groupSO(3). The same bifurcation has been studied by looss and Rossi (1988), using extensive computer-assisted calculations. Here we describe a simpler and more conceptual approach in which the representation ofSO(3) is realised as its conjugation action on the space of symmetric traceless 3 × 3 matrices. We prove the generic existence of five types of symmetry-breaking oscillation: two rotating waves and three standing waves. We analyse the stabilities of the bifurcating branches, describe the restrictions of the dynamics to various fixed-point spaces of subgroups ofSO(3), and discuss possible degeneracies in the stability conditions.  相似文献   

11.
We study a system of ordinary differential equations describing a car‐following model for the motion of N car around a circular highway. All cars behave in the same way. The acceleration of each car is determined as a function of the headway (optimal velocity function). This model is known to have a solution with constant velocities and headways which, in a certain parameter regime, is stable and, varying the density of the cars, the loss of stability is generally due to a super‐ or subcritical Hopf bifurcation. Guided by analytical results, we numerically investigate the global bifurcation diagram for periodic solutions and obtain a complete picture of the dynamics of the model. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We study the unsteady rotary motion of a sphere immersed in a Stokes fluid. The equation of motion for the sphere leads to an integro-differential equation, and we are interested in the asymptotic behavior in time of the solution. Preparing initially the system (sphere + fluid) as a stationary state, we prove that the angular velocity of the sphere slows down with a law t −3/2 if no other forces than the one exerted by the fluid act on the sphere, while if the sphere is subject also to an elastic torque the asymptotic behavior of the angular position of the sphere is t γ , with γ = 5/2 if the initial angular velocity is zero, γ = 3/2 otherwise. This behavior is due to the memory effect of the surrounding fluid. We discuss briefly other initial preparations of the system.  相似文献   

13.
In some diseases there is a focal pattern of velocity in regions of bifurcation, and thus the dynamics of bifurcation has been investigated in this work. A computational model of blood flow through branching geometries has been used to investigate the influence of bifurcation on blood flow distribution. The flow analysis applies the time-dependent, three-dimensional, incompressible Navier–Stokes equations for Newtonian fluids. The governing equations of mass and momentum conservation were solved to calculate the pressure and velocity fields. Movement of blood flow from an arteriole to a venule via a capillary has been simulated using the volume of fluid (VOF) method. The proposed simulation method would be a useful tool in understanding the hydrodynamics of blood flow where the interaction between the RBC deformation and blood flow movement is important. Discrete particle simulation has been used to simulate the blood flow in a bifurcation with solid and fluid particles. The fluid particle method allows for modeling the plasma as a particle ensemble, where each particle represents a collective unit of fluid, which is defined by its mass, moment of inertia, and translational and angular momenta. These kinds of simulations open a new way for modeling the dynamics of complex, viscoelastic fluids at the micro-scale, where both liquid and solid phases are treated with discrete particles.  相似文献   

14.
In this paper, the dynamics of a delayed phytoplankton-zooplankton model is considered. Taking the delay due to the gestation of zooplankton as parameter, we describe the local Hopf bifurcation by center manifold theorem and normal form, then we discuss the global existence of periodic solution. At last, some simulations are given to support our result.  相似文献   

15.
In this paper, we investigate the stability and Hopf bifurcation of a new regulated logistic growth with discrete and distributed delays. By choosing the discrete delay τ as a bifurcation parameter, we prove that the system is locally asymptotically stable in a range of the delay and Hopf bifurcation occurs as τ crosses a critical value. Furthermore, explicit algorithm for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions is derived by normal form theorem and center manifold argument. Finally, an illustrative example is also given to support the theoretical results.  相似文献   

16.
We investigate the behaviour of a neural network model consisting of two coupled oscillators with delays and inhibitory-to-inhibitory connections. We consider the absolute synchronization and show that the connection topology of the network plays a fundamental role in classifying the rich dynamics and bifurcation phenomena. Regarding eigenvalues of the connection matrix as bifurcation parameters, we obtain codimension one bifurcations (including fold bifurcation and Hopf bifurcation) and codimension two bifurcation (including fold-Hopf bifurcations and Hopf–Hopf bifurcations). Based on the normal form theory and center manifold reduction, we obtain detailed information about the bifurcation direction and stability of various bifurcated equilibria as well as periodic solutions with some kinds of spatio-temporal patterns. Numerical simulation is also given to support the obtained results.  相似文献   

17.
In this paper, we investigate a class of generalized Burgers–Huxley equation by employing the bifurcation method of planar dynamical systems. Firstly, we reduce the equation to a planar system via the traveling wave solution ansatz; then by computing the singular point quantities, we obtain the conditions of integrability and determine the existence of one stable limit cycle from Hopf bifurcation in the corresponding planar system. From this, some new exact solutions and a special periodic traveling wave solution, which is isolated as a limit, are obtained. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
We show some abstract (purely set-topological) principles which allow to prove the existence of global solution branches. The results apply either for the locally compact situation and then allow to prove global bifurcation results of Rabinowitz type, or they apply for a locally connected situation and allow to prove global branches of arbitrarily small perturbations without any compactness hypotheses. As two applications, we obtain a generalization of the Rabinowitz theorem for bifurcation from an interval and an implicit function type theorem for nondifferentiable functions.  相似文献   

19.
We consider the system of delay differential equations (DDE) representing the models containing two cells with time-delayed connections. We investigate global, local stability and the bifurcations of the trivial solution under some generic conditions on the Taylor coefficients of the DDE. Regarding eigenvalues of the connection matrix as bifurcation parameters, we obtain codimension one bifurcations (including pitchfork, transcritical and Hopf bifurcation) and Takens-Bogdanov bifurcation as a codimension two bifurcation. For application purposes, this is important since one can now identify the possible asymptotic dynamics of the DDE near the bifurcation points by computing quantities which depend explicitly on the Taylor coefficients of the original DDE. Finally, we show that the analytical results agree with numerical simulations.  相似文献   

20.
Nonlinear responses of a rub-impact overhung rotor   总被引:1,自引:0,他引:1  
For a rotor system with bearings and step-diameter shaft in the oxygen pump of an engine, the contact between the rotor and the case is considered, and the chaotic response and bifurcation are investigated. The system is divided into elements of elastic support, shaft and disk, and based on the transfer matrix method, the motion equation of the system is derived, and solved by Newmark integration method. It is found that hardening the support can delay the occurrence of chaos. When rubbing begins, the grazing bifurcation will cause periodic motion to become quasi-period. With variation of system parameters, such as rotating speed, imbalance and external damping, chaotic response can be observed, along with other complex dynamics such as period- doubling bifurcation and torus bifurcation in the response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号