首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
提出了数值求解一维非定常对流扩散反应方程的一种高精度紧致隐式差分格式,其截断误差为O(τ~4+τ~2h~2+h~4),即格式整体具有四阶精度.差分方程在每一时间层上只用到了三个网格节点,所形成的代数方程组为三对角型,可采用追赶法进行求解,最后通过数值算例验证了格式的精确性和可靠性.  相似文献   

2.
In this article, we develop an exponential high order compact alternating direction implicit (EHOC ADI) method for solving three dimensional (3D) unsteady convection–diffusion equations. The method, which requires only a regular seven‐point 3D stencil similar to that in the standard second‐order methods, is second order accurate in time and fourth‐order accurate in space and unconditionally stable. The resulting EHOC ADI scheme in each alternating direction implicit (ADI) solution step corresponding to a strictly diagonally dominant matrix equation can be solved by the application of the one‐dimensional tridiagonal Thomas algorithm with a considerable saving in computing time. Numerical experiments for three test problems are carried out to demonstrate the performance of the present method and to compare it with the classical Douglas–Gunn ADI method and the Karaa's high‐order compact ADI method. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

3.
A mathematical formulation of the two-dimensional Cole–Hopf transformation is investigated in detail. By making use of the Cole–Hopf transformation, a nonlinear two-dimensional unsteady advection–diffusion equation is transformed into a linear equation, and the transformed equation is solved by the spectral method previously proposed by one of the authors. Thus a solution to initial value problems of nonlinear two-dimensional unsteady advection–diffusion equations is derived. On the base of the solution, a numerical scheme explicit with respect to time is presented for nonlinear advection–diffusion equations. Numerical experiments show that the present scheme possesses the total variation diminishing properties and gives solutions with good quality.  相似文献   

4.
This paper presents a class of fourth-order compact finite difference technique for solving two-dimensional convection diffusion equation. The equation is recasted as a first-order mixed system, introducing a conservation and flux equations. Since flux appears explicitly in the mixed formulation, we search a fourth-order compact approximation of the primary solution field and flux. Based on Taylor series expansion, the proposed compact mixed formulation generalizes the work of Carey and Spotz [G.F. Carey, W.F. Spotz, Higher-order compact mixed methods, Commun. Numer. Meth. Eng. 13 (1997)]. We show that their fourth-order formulation corresponds to a particular case of our presented scheme, and we extend their work to variable diffusion and convection coefficients. Some numerical experiments are performed to demonstrate the fourth-order effective convergence rate.  相似文献   

5.
We present an explicit sixth‐order compact finite difference scheme for fast high‐accuracy numerical solutions of the two‐dimensional convection diffusion equation with variable coefficients. The sixth‐order scheme is based on the well‐known fourth‐order compact (FOC) scheme, the Richardson extrapolation technique, and an operator interpolation scheme. For a particular implementation, we use multiscale multigrid method to compute the fourth‐order solutions on both the coarse grid and the fine grid. Then, an operator interpolation scheme combined with the Richardson extrapolation technique is used to compute a sixth‐order accurate fine grid solution. We compare the computed accuracy and the implementation cost of the new scheme with the standard nine‐point FOC scheme and Sun–Zhang's sixth‐order method. Two convection diffusion problems are solved numerically to validate our proposed sixth‐order scheme. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

6.
针对三维非稳态对流扩散反应方程,构造了一种高精度紧致有限差分格式,对空间的离散采用四阶紧致差分方法,对时间的离散采用Taylor级数展开和余项修正技术,所提格式在时间上的精度为二阶、在空间上的精度为四阶。利用Fourier稳定性分析法证明了该格式是无条件稳定的。最后给出数值算例验证了理论结果。  相似文献   

7.
Longitudinal dispersion of suspended particles with settling velocity in a turbulent shear flow over a rough-bed surface is investigated numerically when the settling particles are released from an elevated continuous line-source. A combined scheme of central and four-point upwind differences is used to solve the steady turbulent convection–diffusion equation and the alternating direction implicit (ADI) method is adopted for the unsteady equation. It is shown how the mixing of settling particles is influenced by the ‘log-wake law’ velocity and the corresponding eddy diffusivity when the initial distribution of concentration is regarded as a line-source. The concentration profiles for the steady-state conditions agree well with the existing experimental data and some other numerical results when the settling velocity is zero. The behaviours of iso-concentration lines in the vertical plane for different releasing heights are studied in terms of the relative importance of convection, eddy diffusion and settling velocity.  相似文献   

8.
We propose a new high‐order finite difference discretization strategy, which is based on the Richardson extrapolation technique and an operator interpolation scheme, to solve convection diffusion equations. For a particular implementation, we solve a fine grid equation and a coarse grid equation by using a fourth‐order compact difference scheme. Then we combine the two approximate solutions and use the Richardson extrapolation to compute a sixth‐order accuracy coarse grid solution. A sixth‐order accuracy fine grid solution is obtained by interpolating the sixth‐order coarse grid solution using an operator interpolation scheme. Numerical results are presented to demonstrate the accuracy and efficacy of the proposed finite difference discretization strategy, compared to the sixth‐order combined compact difference (CCD) scheme, and the standard fourth‐order compact difference (FOC) scheme. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 20: 18–32, 2004.  相似文献   

9.
In this paper, a high-order exponential (HOE) scheme is developed for the solution of the unsteady one-dimensional convection-diffusion equation. The present scheme uses the fourth-order compact exponential difference formula for the spatial discretization and the (2,2) Padé approximation for the temporal discretization. The proposed scheme achieves fourth-order accuracy in temporal and spatial variables and is unconditionally stable. Numerical experiments are carried out to demonstrate its accuracy and to compare it with analytic solutions and numerical results established by other methods in the literature. The results show that the present scheme gives highly accurate solutions for all test examples and can get excellent solutions for convection dominated problems.  相似文献   

10.
We derive a high‐order compact alternating direction implicit (ADI) method for solving three‐dimentional unsteady convection‐diffusion problems. The method is fourth‐order in space and second‐order in time. It permits multiple uses of the one‐dimensional tridiagonal algorithm with a considerable saving in computing time and results in a very efficient solver. It is shown through a discrete Fourier analysis that the method is unconditionally stable in the diffusion case. Numerical experiments are conducted to test its high order and to compare it with the standard second‐order Douglas‐Gunn ADI method and the spatial fourth‐order compact scheme by Karaa. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

11.
针对一维对流扩散反应方程,基于对流扩散方程的四阶指数型紧致差分格式,以及一阶导数的四阶Padé公式,发展了一种高效求解对流扩散反应方程的混合型四阶紧致差分格式.数值实验结果验证了格式对于边界层问题或大雷诺数或大Pelect数的大梯度问题的求解的高精度和鲁棒性的优点.  相似文献   

12.
对流扩散方程的四阶紧凑迎风差分格式   总被引:4,自引:0,他引:4  
陈国谦  高智 《计算数学》1992,14(3):345-357
§1.引言 流动和传热传质的基本方程均是对流扩散型的.对流扩散方程的高阶紧凑差分格式,作为提高计算可靠性和节省计算量的一条有效途径,已引起相当的重视.作为该领域的一大进展,新近由Dennis推出的对流扩散方程四阶紧凑格式,在二维情形下呈九点式且勿须引入中间变量,只涉及对流扩散量本身,能在较粗网格下获取较为准确的数值结果.从本质上说,该格式系指数型四阶紧凑格式的多项式型翻版.它与指数型紧凑格  相似文献   

13.
In this article, a fast singly diagonally implicit Runge–Kutta method is designed to solve unsteady one‐dimensional convection diffusion equations. We use a three point compact finite difference approximation for the spatial discretization and also a three‐stage singly diagonally implicit Runge–Kutta (RK) method for the temporal discretization. In particular, a formulation evaluating the boundary values assigned to the internal stages for the RK method is derived so that a phenomenon of the order of the reduction for the convergence does not occur. The proposed scheme not only has fourth‐order accuracy in both space and time variables but also is computationally efficient, requiring only a linear matrix solver for a tridiagonal matrix system. It is also shown that the proposed scheme is unconditionally stable and suitable for stiff problems. Several numerical examples are solved by the new scheme and the numerical efficiency and superiority of it are compared with the numerical results obtained by other methods in the literature. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 788–812, 2014  相似文献   

14.
Based on the resource exergy theory, a unified exergetic index is proposed to assess both the quantity and quality of the water of the mainstream Yellow River, thus verifying the real available quantity of the river water in an ecological thermodynamics view. The chemical exergy, thermal exergy, potential exergy and sediment exergy of the river water as partial exergies are, respectively, calculated with the field river water intake data of the mainstream Yellow River. Exergetic potential is also defined to describe different working capacities of the river water along the mainstream. Finally, the temporal and spatial variation of the water resources of the mainstream Yellow River is illuminated with the proposed exergetic measure.  相似文献   

15.
We propose an integrable discrete model of one‐dimensional soil water infiltration. This model is based on the continuum model by Broadbridge and White, which takes the form of nonlinear convection–diffusion equation with a nonlinear flux boundary condition at the surface. It is transformed to the Burgers equation with a time‐dependent flux term by the hodograph transformation. We construct a discrete model preserving the underlying integrability, which is formulated as the self‐adaptive moving mesh scheme. The discretization is based on linearizability of the Burgers equation to the linear diffusion equation, but the naïve discretization based on the Euler scheme which is often used in the theory of discrete integrable systems does not necessarily give a good numerical scheme. Taking desirable properties of a numerical scheme into account, we propose an alternative discrete model that produces solutions with similar accuracy to direct computation on the original nonlinear equation, but with clear benefits regarding computational cost.  相似文献   

16.
In this article, an exponential high-order compact (EHOC) alternating direction implicit (ADI) method, in which the Crank–Nicolson scheme is used for the time discretization and an exponential fourth-order compact difference formula for the steady-state 1D convection–diffusion problem is used for the spatial discretization, is presented for the solution of the unsteady 2D convection–diffusion problems. The method is temporally second-order accurate and spatially fourth order accurate, which requires only a regular five-point 2D stencil similar to that in the standard second-order methods. The resulting EHOC ADI scheme in each ADI solution step corresponds to a strictly diagonally dominant tridiagonal matrix equation which can be inverted by simple tridiagonal Gaussian decomposition and may also be solved by application of the one-dimensional tridiagonal Thomas algorithm with a considerable saving in computing time. The unconditionally stable character of the method was verified by means of the discrete Fourier (or von Neumann) analysis. Numerical examples are given to demonstrate the performance of the method proposed and to compare mostly it with the high order ADI method of Karaa and Zhang and the spatial third-order compact scheme of Note and Tan.  相似文献   

17.
A singularly perturbed elliptic convection–diffusion equation with a perturbation parameter ε (ε ∈ (0, 1]) is considered on a rectangle. As applied to this equation, a standard finite difference scheme on a uniform grid is studied under computer perturbations. This scheme is not ε-uniformly stable with respect to perturbations. The conditions imposed on a “computing system” are established under which a converging standard scheme (referred to as a computer difference scheme) remains stable.  相似文献   

18.
The method of El-Gendi [El-Gendi SE. Chebyshev solution of differential integral and integro-differential equations. J Comput 1969;12:282–7; Mihaila B, Mihaila I. Numerical approximation using Chebyshev polynomial expansions: El-gendi’s method revisited. J Phys A Math Gen 2002;35:731–46] is presented with interface points to deal with linear and non-linear convection–diffusion equations.The linear problem is reduced to two systems of ordinary differential equations. And, then, each system is solved using three-level time scheme.The non-linear problem is reduced to three systems of ordinary differential. Each one of these systems is, then, solved using three-level time scheme. Numerical results for Burgers’ equation and modified Burgers’ equation are shown and compared with other methods. The numerical results are found to be in good agreement with the exact solutions.  相似文献   

19.
We consider an identification problem for a stationary nonlinear convection–diffusion–reaction equation in which the reaction coefficient depends nonlinearly on the concentration of the substance. This problem is reduced to an inverse extremal problem by an optimization method. The solvability of the boundary value problem and the extremal problem is proved. In the case that the reaction coefficient is quadratic, when the equation acquires cubic nonlinearity, we deduce an optimality system. Analyzing it, we establish some estimates of the local stability of solutions to the extremal problem under small perturbations both of the quality functional and the given velocity vector which occurs multiplicatively in the convection–diffusion–reaction equation.  相似文献   

20.
We propose a finite volume scheme for convection–diffusion equations with nonlinear diffusion. Such equations arise in numerous physical contexts. We will particularly focus on the drift-diffusion system for semiconductors and the porous media equation. In these two cases, it is shown that the transient solution converges to a steady-state solution as t tends to infinity. The introduced scheme is an extension of the Scharfetter–Gummel scheme for nonlinear diffusion. It remains valid in the degenerate case and preserves steady-states. We prove the convergence of the scheme in the nondegenerate case. Finally, we present some numerical simulations applied to the two physical models introduced and we underline the efficiency of the scheme to preserve long-time behavior of the solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号