首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
借助显式紧致格式和隐式紧致格式的思想,基于截断误差余项修正,并结合原方程本身,构造出了一种求解一维定常对流扩散反应方程的高精度混合型紧致差分格式.格式仅用到三个点上的未知函数值及一阶导数值,而一阶导数值利用四阶Pade格式进行计算,格式整体具有四阶精度.数值实验结果验证了格式的精确性和可靠性.  相似文献   

2.
针对三维非稳态对流扩散反应方程,构造了一种高精度紧致有限差分格式,对空间的离散采用四阶紧致差分方法,对时间的离散采用Taylor级数展开和余项修正技术,所提格式在时间上的精度为二阶、在空间上的精度为四阶。利用Fourier稳定性分析法证明了该格式是无条件稳定的。最后给出数值算例验证了理论结果。  相似文献   

3.
提出了数值求解一维非定常对流扩散反应方程的一种高精度紧致隐式差分格式,其截断误差为O(τ~4+τ~2h~2+h~4),即格式整体具有四阶精度.差分方程在每一时间层上只用到了三个网格节点,所形成的代数方程组为三对角型,可采用追赶法进行求解,最后通过数值算例验证了格式的精确性和可靠性.  相似文献   

4.
以四阶CWENO重构为基础,通过将对流项采用低耗散中心迎风格式离散,扩散项采用四阶中心差分格式离散,对得到的半离散格式采用四阶龙格库塔方法在时间方向上推进,得到一种求解对流扩散方程的高阶有限差分格式.数值结果验证了该格式的四阶精度和基本无振荡特性.  相似文献   

5.
本文研究含参数ε的无源对流扩散问题的有限差分格式.首先在三点模板上将两边结点处的函数值关于中心点进行泰勒展开,反复利用原微分方程,通过"降阶"的思想将两个泰勒展式中的高阶导数项化为只含一阶导数的展式,联立展式消去一阶导数项从而得到形式上精确的差分格式.由于形式上精确的差分格式的系数含无穷项,如何保留有限项使得差分格式分别适用于求解参数较大或参数较小的对流扩散问题是本文研究的重点,为此本文分情形设计了两类差分格式:当参数较大时,因h的幂次对差分格式系数影响更大,本文设计出"横向系列修正差分格式(HDS)",其精度分别可达到二阶、四阶、六阶、八阶;而对小参数问题,相对于步长, 1/ε的幂次对差分格式的系数影响更大,据此本文设计出"纵向系列修正差分格式(VDS)".数值算例将横向、纵向系列格式与七种参考文献给出的差分格式进行了数值比对,验证了本文设计的横向差分格式(HDS)适用于求解ε较大时的对流扩散问题,而纵向系列修正差分格式(VDS)适用于求解ε较小时的问题,且数值解精度较参考格式更高.  相似文献   

6.
基于非均匀网格上函数的泰勒级数展开,结合残参量修正法,推导了非均匀网格上对流扩散方程的高阶指数型紧致差分格式,选取的算例表明,格式兼有高精度和高分辨率的优点,能够很好的适用于大梯度变化,计算区域中含边界层和对流占优区域中的流动问题的求解.  相似文献   

7.
王涛  刘铁钢 《计算数学》2016,38(4):391-404
目前,许多高精度差分格式,由于未成功地构造与其精度匹配的稳定的边界格式,不得不采用低精度的边界格式.本文针对对流扩散方程证明了存在一致四阶紧致格式,它的边界点的计算格式和内点的计算格式的截断误差主项保持一致,给出了具体内点和边界格式;并分析了此半离散格式的渐近稳定性.数值结果表明该格式是四阶精度;在对流占优情况下,本文边界格式的数值结果比四阶精度的显式差分格式的的数值结果的数值振荡小,取得了不错的效果,理论结果得到了数值验证;驱动方腔数值结果显示,本文对N-S方程的离散格式具有很好的可靠性,适合对复杂流体流动的数值模拟和研究.  相似文献   

8.
对流扩散方程的四阶紧凑迎风差分格式   总被引:4,自引:0,他引:4  
陈国谦  高智 《计算数学》1992,14(3):345-357
§1.引言 流动和传热传质的基本方程均是对流扩散型的.对流扩散方程的高阶紧凑差分格式,作为提高计算可靠性和节省计算量的一条有效途径,已引起相当的重视.作为该领域的一大进展,新近由Dennis推出的对流扩散方程四阶紧凑格式,在二维情形下呈九点式且勿须引入中间变量,只涉及对流扩散量本身,能在较粗网格下获取较为准确的数值结果.从本质上说,该格式系指数型四阶紧凑格式的多项式型翻版.它与指数型紧凑格  相似文献   

9.
侯波  葛永斌 《应用数学》2019,32(3):635-642
本文提出数值求解一维对流方程的一种两层隐式紧致差分格式,采用泰勒级数展开法以及对截断误差余项中的三阶导数进行修正的方法对时间和空间导数进行离散.格式的截断误差为O(τ~4+τ~2h~2+h~4),即该格式在时间和空间上均可达到四阶精度.利用von Neumann方法分析得到该格式是无条件稳定的.通过数值实验验证了本文格式的精确性和稳定性.  相似文献   

10.
迎风紧致格式与驱动方腔流动问题的直接数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
本文给出了一种求解不可压缩流动问题的高精度差分格式,即迎风紧致格式.出发方程采用二维非定常原始变量Naiver-Stokes方程组.在差分方程中,对流项采用三阶精度的迎风紧致差分,其余空间导数项采用四阶紧致差分.本文利用该差分格式在等距网格上数值模拟了驱动方腔流动中的分离涡运动.在257×257的细网格上,Re数最高计算到10000.Re≤5000时的计算结果与前人结果符合得很好.当Re≥7500时发现流动不存在定常层流解而为非定常周期性解,并首次给出了非定常解的结果。  相似文献   

11.
In this paper, we have developed a fourth-order compact finite difference scheme for solving the convection-diffusion equation with Neumann boundary conditions. Firstly, we apply the compact finite difference scheme of fourth-order to discrete spatial derivatives at the interior points. Then, we present a new compact finite difference scheme for the boundary points, which is also fourth-order accurate. Finally, we use a Padé approximation method for the resulting linear system of ordinary differential equations. The presented scheme has fifth-order accuracy in the time direction and fourth-order accuracy in the space direction. It is shown through analysis that the scheme is unconditionally stable. Numerical results show that the compact finite difference scheme gives an efficient method for solving the convection-diffusion equations with Neumann boundary conditions.  相似文献   

12.
High-order compact finite difference method for solving the two-dimensional fourth-order nonlinear hyperbolic equation is considered in this article. In order to design an implicit compact finite difference scheme, the fourth-order equation is written as a system of two second-order equations by introducing the second-order spatial derivative as a new variable. The second-order spatial derivatives are approximated by the compact finite difference operators to obtain a fourth-order convergence. As well as, the second-order time derivative is approximated by the central difference method. Then, existence and uniqueness of numerical solution is given. The stability and convergence of the compact finite difference scheme are proved by the energy method. Numerical results are provided to verify the accuracy and efficiency of this scheme.  相似文献   

13.
We present a sixth-order explicit compact finite difference scheme to solve the three-dimensional (3D) convection-diffusion equation. We first use a multiscale multigrid method to solve the linear systems arising from a 19-point fourth-order discretization scheme to compute the fourth-order solutions on both a coarse grid and a fine grid. Then an operator-based interpolation scheme combined with an extrapolation technique is used to approximate the sixth-order accurate solution on the fine grid. Since the multigrid method using a standard point relaxation smoother may fail to achieve the optimal grid-independent convergence rate for solving convection-diffusion equations with a high Reynolds number, we implement the plane relaxation smoother in the multigrid solver to achieve better grid independency. Supporting numerical results are presented to demonstrate the efficiency and accuracy of the sixth-order compact (SOC) scheme, compared with the previously published fourth-order compact (FOC) scheme.  相似文献   

14.
This paper is devoted to the testing and comparison of numerical solutions obtained from higher-order accurate finite difference schemes for the two-dimensional Burgers' equation having moderate to severe internal gradients. The fourth-order accurate two-point compact scheme, and the fourth-order accurate Du Fort Frankel scheme are derived. The numerical stability and convergence are presented. The cases of shock waves of severe gradient are solved and checked with the fourth-order accurate Du Fort Frankel scheme solutions. The present study shows that the fourth-order two-point compact scheme is highly stable and efficient in comparison with the fourth-order accurate Du Fort Frankel scheme.  相似文献   

15.
基于Richardson外推法提出了数值求解三维泊松方程的高阶紧致差分方法.方法通过利用四阶和六阶紧致差分格式,分别在细网格和粗网格上求解,然后利用Richardson外推技术和算子插值方法,得到三维泊松方程在细网格上的六阶和八阶精度的数值解.数值实验结果验证了该方法的精确性和有效性.  相似文献   

16.
In this paper, a compact finite difference scheme is constructed and investigated for the fourth-order time-fractional integro-differential equation with a weakly singular kernel. In the temporal direction, the Caputo derivative term is treated by means of L1 discrete formula and the Riemann–Liouville fractional integral term is discretized by the second-order convolution quadrature rule. A fully discrete compact difference scheme is constructed with the space discretization by the fourth-order compact approximation. The stability and convergence are obtained by the discrete energy method, the Cholesky decomposition and the reduced-order method. Numerical experiments are presented to verify the theoretical analysis.  相似文献   

17.
In this paper, we extend our previous work (M.-C. Lai, A simple compact fourth-order Poisson solver on polar geometry, J. Comput. Phys. 182 (2002) 337–345) to 3D cases. More precisely, we present a spectral/finite difference scheme for Poisson equation in cylindrical coordinates. The scheme relies on the truncated Fourier series expansion, where the partial differential equations of Fourier coefficients are solved by a formally fourth-order accurate compact difference discretization. Here the formal fourth-order accuracy means that the scheme is exactly fourth-order accurate while the poles are excluded and is third-order accurate otherwise. Despite the degradation of one order of accuracy due to the presence of poles, the scheme handles the poles naturally; thus, no pole condition is needed. The resulting linear system is then solved by the Bi-CGSTAB method with the preconditioner arising from the second-order discretization which shows the scalability with the problem size.  相似文献   

18.
This article presents a time-accurate numerical method using high-order accurate compact finite difference scheme for the incompressible Navier-Stokes equations. The method relies on the artificial compressibility formulation, which endows the governing equations a hyperbolic-parabolic nature. The convective terms are discretized with a third-order upwind compact scheme based on flux-difference splitting, and the viscous terms are approximated with a fourth-order central compact scheme. Dual-time stepping is implemented for time-accurate calculation in conjunction with Beam-Warming approximate factorization scheme. The present compact scheme is compared with an established non-compact scheme via analysis in a model equation and numerical tests in four benchmark flow problems. Comparisons demonstrate that the present third-order upwind compact scheme is more accurate than the non-compact scheme while having the same computational cost as the latter.  相似文献   

19.
In this paper, a high-order and accurate method is proposed for solving the unsteady two-dimensional Schrödinger equation. We apply a compact finite difference approximation of fourth-order for discretizing spatial derivatives and a boundary value method of fourth-order for the time integration of the resulting linear system of ordinary differential equations. The proposed method has fourth-order accuracy in both space and time variables. Moreover this method is unconditionally stable due to the favorable stability property of boundary value methods. The results of numerical experiments are compared with analytical solutions and with those provided by other methods in the literature. These results show that the combination of a compact finite difference approximation of fourth-order and a fourth-order boundary value method gives an efficient algorithm for solving the two dimensional Schrödinger equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号