首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this paper, we show that if the volume sum \( \sum\nolimits_{h = 1}^\infty {{h^{n - 1}}{\Psi^t}(h)} \) converges for a function ψ (not necessarily monotonic), then the set of points \( \left( {x,{w_1}, \ldots, {w_{t - 1}}} \right) \in {\mathbb R} \times {{\mathbb Q}_{{p_1}}} \times \ldots \times {{\mathbb Q}_{{p_{t - 1}}}} \) that simultaneously satisfy the inequalities \( \left| {P(x)} \right| < \Psi (H) {\text{and}} {\left| {P\left( {{w_i}} \right)} \right|_{{p_i}}} < \Phi (H), 1 \leqslant i \leqslant t - 1 \), for infinitely many integer polynomials P has measure zero.  相似文献   

2.
In this paper, we study the existence of positive entire large and bounded radial positive solutions for the following nonlinear system
$$\left\{ {\begin{array}{*{20}c}{S_{k_1 } \left( {\lambda \left( {D^2 u_1 } \right)} \right) + a_1 \left( {\left| x \right|} \right)\left| {\nabla u_1 } \right|^{k_1 } = p_1 \left( {\left| x \right|} \right)f_1 \left( {u_2 } \right)} & {for x \in \mathbb{R}^N ,} \\{S_{k_2 } \left( {\lambda \left( {D^2 u_2 } \right)} \right) + a_2 \left( {\left| x \right|} \right)\left| {\nabla u_2 } \right|^{k_2 } = p_2 \left( {\left| x \right|} \right)f_2 \left( {u_1 } \right)} & {for x \in \mathbb{R}^N .} \\\end{array} } \right.$$
Here \({S_{{k_i}}}\left( {\lambda \left( {{D^2}{u_i}} \right)} \right)\) is the k i -Hessian operator, a 1, p 1, f 1, a 2, p 2 and f 2 are continuous functions.
  相似文献   

3.
In this note, we prove some results of Hua in short intervals. For example, each sufficiently large integer N satisfying some congruence conditions can be written as
$ \left\{ {\begin{array}{*{20}{c}} {N = p_1^2 + p_2^2 + p_3^2 + p_4^2 + {p^k}}, \hfill \\ {\left| {{p_j} - \sqrt {N/5} } \right| \leqslant U,\left| {p - {{\left( {N/5} \right)}^{\tfrac{1}{k}}}} \right|\leqslant UN - \tfrac{1}{2} + \tfrac{1}{k},j = 1,2,3,4,} \hfill \\ \end{array} } \right. $
where \( U = N\tfrac{1}{2} - \eta + \varepsilon \) with \( \eta = \frac{2}{{\kappa \left( {K + 1} \right)\left( {{K^2} + 2} \right)}} \) and \( K = {2^{k - 1}},k\geqslant 3. \)
  相似文献   

4.
The paper describes a systematic computational study of the prime counting function π(x) and three of its analytic approximations: the logarithmic integral \({\text{li}}{\left( x \right)}: = {\int_0^x {\frac{{dt}}{{\log \,t}}} }\), \({\text{li}}{\left( x \right)} - \frac{1}{2}{\text{li}}{\left( {{\sqrt x }} \right)}\), and \(R{\left( x \right)}: = {\sum\nolimits_{k = 1}^\infty {{\mu {\left( k \right)}{\text{li}}{\left( {x^{{1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-\nulldelimiterspace} k}} } \right)}} \mathord{\left/ {\vphantom {{\mu {\left( k \right)}{\text{li}}{\left( {x^{{1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-\nulldelimiterspace} k}} } \right)}} k}} \right. \kern-\nulldelimiterspace} k} }\), where μ is the Möbius function. The results show that π(x)x) for 2≤x≤1014, and also seem to support several conjectures on the maximal and average errors of the three approximations, most importantly \({\left| {\pi {\left( x \right)} - {\text{li}}{\left( x \right)}} \right|} < x^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}\) and \( - \frac{2}{5}x^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} < {\int_2^x {{\left( {\pi {\left( u \right)} - {\text{li}}{\left( u \right)}} \right)}du < 0} }\) for all x>2. The paper concludes with a short discussion of prospects for further computational progress.  相似文献   

5.
In this paper, we investigate the positive solutions to the following integral system with a polyharmonic extension operator on R~+_n:{u(x)=c_n,a∫_?R_+~n(x_n~(1-a_v)(y)/|x-y|~(n-a))dy,x∈R_+~n,v(y)=c_n,a∫_R_+~n(x_n~(1-a_uθ)(x)/|x-y|~(n-a))dx,y∈ ?R_+~n,where n 2, 2-n a 1, κ, θ 0. This integral system arises from the Euler-Lagrange equation corresponding to an integral inequality on the upper half space established by Chen(2014). The explicit formulations of positive solutions are obtained by the method of moving spheres for the critical case κ =n-2+a/n-a,θ =n+2-a/ n-2+a. Moreover,we also give the nonexistence of positive solutions in the subcritical case for the above system.  相似文献   

6.
The purpose of this paper is threefold. First, we prove sharp singular affine Moser–Trudinger inequalities on both bounded and unbounded domains in \({\mathbb {R}}^{n}\). In particular, we will prove the following much sharper affine Moser–Trudinger inequality in the spirit of Lions (Rev Mat Iberoamericana 1(2):45–121, 1985) (see our Theorem 1.4): Let \(\alpha _{n}=n\left( \frac{n\pi ^{\frac{n}{2}}}{\Gamma (\frac{n}{2}+1)}\right) ^{\frac{1}{n-1}}\), \(0\le \beta <n\) and \(\tau >0\). Then there exists a constant \(C=C\left( n,\beta \right) >0\) such that for all \(0\le \alpha \le \left( 1-\frac{\beta }{n}\right) \alpha _{n}\) and \(u\in C_{0}^{\infty }\left( {\mathbb {R}}^{n}\right) \setminus \left\{ 0\right\} \) with the affine energy \(~{\mathcal {E}}_{n}\left( u\right) <1\), we have
$$\begin{aligned} {\displaystyle \int \nolimits _{{\mathbb {R}}^{n}}} \frac{\phi _{n,1}\left( \frac{2^{\frac{1}{n-1}}\alpha }{\left( 1+{\mathcal {E}}_{n}\left( u\right) ^{n}\right) ^{\frac{1}{n-1}}}\left| u\right| ^{\frac{n}{n-1}}\right) }{\left| x\right| ^{\beta }}dx\le C\left( n,\beta \right) \frac{\left\| u\right\| _{n}^{n-\beta }}{\left| 1-{\mathcal {E}}_{n}\left( u\right) ^{n}\right| ^{1-\frac{\beta }{n}}}. \end{aligned}$$
Moreover, the constant \(\left( 1-\frac{\beta }{n}\right) \alpha _{n}\) is the best possible in the sense that there is no uniform constant \(C(n, \beta )\) independent of u in the above inequality when \(\alpha >\left( 1-\frac{\beta }{n}\right) \alpha _{n}\). Second, we establish the following improved Adams type inequality in the spirit of Lions (Theorem 1.8): Let \(0\le \beta <2m\) and \(\tau >0\). Then there exists a constant \(C=C\left( m,\beta ,\tau \right) >0\) such that
$$\begin{aligned} \underset{u\in W^{2,m}\left( {\mathbb {R}}^{2m}\right) , \int _{ {\mathbb {R}}^{2m}}\left| \Delta u\right| ^{m}+\tau \left| u\right| ^{m} \le 1}{\sup } {\displaystyle \int \nolimits _{{\mathbb {R}}^{2m}}} \frac{\phi _{2m,2}\left( \frac{2^{\frac{1}{m-1}}\alpha }{\left( 1+\left\| \Delta u\right\| _{m}^{m}\right) ^{\frac{1}{m-1}}}\left| u\right| ^{\frac{m}{m-1}}\right) }{\left| x\right| ^{\beta }}dx\le C\left( m,\beta ,\tau \right) , \end{aligned}$$
for all \(0\le \alpha \le \left( 1-\frac{\beta }{2m}\right) \beta (2m,2)\). When \(\alpha >\left( 1-\frac{\beta }{2m}\right) \beta (2m,2)\), the supremum is infinite. In the above, we use
$$\begin{aligned} \phi _{p,q}(t)=e^{t}- {\displaystyle \sum \limits _{j=0}^{j_{\frac{p}{q}}-2}} \frac{t^{j}}{j!},\,\,\,j_{\frac{p}{q}}=\min \left\{ j\in {\mathbb {N}} :j\ge \frac{p}{q}\right\} \ge \frac{p}{q}. \end{aligned}$$
The main difficulties of proving the above results are that the symmetrization method does not work. Therefore, our main ideas are to develop a rearrangement-free argument in the spirit of Lam and Lu (J Differ Equ 255(3):298–325, 2013; Adv Math 231(6): 3259–3287, 2012), Lam et al. (Nonlinear Anal 95: 77–92, 2014) to establish such theorems. Third, as an application, we will study the existence of weak solutions to the biharmonic equation
$$\begin{aligned} \left\{ \begin{array}{l} \Delta ^{2}u+V(x)u=f(x,u)\text { in }{\mathbb {R}}^{4}\\ u\in H^{2}\left( {\mathbb {R}}^{4}\right) ,~u\ge 0 \end{array} \right. , \end{aligned}$$
where the nonlinearity f has the critical exponential growth.
  相似文献   

7.
Let f and g be multiplicative functions of modulus 1. Assume that \( {\lim_{x \to \infty }}\frac{1}{x}\left| {\sum\nolimits_{n \leqslant x} {f(n)} } \right| = A > 0 \) and \( {\lim_{x \to \infty }}\frac{1}{x}\left| {\sum\nolimits_{n \leqslant x} {g(n)} } \right| = 0 \). We prove that, under these conditions,
$ \mathop {\lim }\limits_{x \to \infty } \frac{1}{x}\sum\limits_{n \leqslant x} {f(n)g(n + 1) = 0.}$
Concerning the Liouville function λ, we find an upper estimate for \( \frac{1}{x}\left| {\sum\limits_{n \leqslant x} {\lambda (n)\lambda (n + 1)} } \right| \) under the unproved hypothesis that L(s, χ) have Siegel zeros for an infinite sequence of L-functions.
  相似文献   

8.
Damien Roy 《Acta Mathematica》2011,206(2):325-362
Let \( \gamma = \frac{1}{2}\left( {1 + \sqrt {5} } \right) \) denote the golden ratio. H. Davenport and W. M. Schmidt showed in 1969 that, for each non-quadratic irrational real number ξ, there exists a constant c > 0 with the property that, for arbitrarily large values of X, the inequalities\( \left| {{x_0}} \right| \leqslant X,\,\,\,\left| {{x_0}\xi - {x_1}} \right| \leqslant c{X^{{{{ - 1}} \left/ {\gamma } \right.}}}\,\,\,{\text{and}}\,\,\,\left| {{x_0}{\xi^2} - {x_2}} \right| \leqslant c{X^{{{{ - 1}} \left/ {\gamma } \right.}}} \)admit no non-zero solution \( \left( {{x_0},{x_1},{x_2}} \right) \in {\mathbb{Z}^3} \). Their result is best possible in the sense that, conversely, there are countably many non-quadratic irrational real numbers ξ such that, for a larger value of c, the same inequalities admit a non-zero integer solution for each X ≥ 1. Such extremal numbers are transcendental and their set is stable under the action of \( {\text{G}}{{\text{L}}_2}\left( \mathbb{Z} \right) \) on \( \mathbb{R}\backslash \mathbb{Q} \) by linear fractional transformations. In this paper, it is shown that there exist extremal numbers ξ for which the Lagrange constant ν(ξ) = liminf q→∞ q||qξ|| is \( \frac{1}{3} \), the largest possible value for a non-quadratic number, and that there is a natural bijection between the \( {\text{G}}{{\text{L}}_2}\left( \mathbb{Z} \right) \)-equivalence classes of such numbers and the non-trivial solutions of Markoff’s equation.  相似文献   

9.
It is established that H. Bohr’s inequality \(\sum\nolimits_{k = 0}^\infty {\left| {{{f^{\left( k \right)} \left( 0 \right)} \mathord{\left/ {\vphantom {{f^{\left( k \right)} \left( 0 \right)} {\left( {2^{{k \mathord{\left/ {\vphantom {k 2}} \right. \kern-\nulldelimiterspace} 2}} k!} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {2^{{k \mathord{\left/ {\vphantom {k 2}} \right. \kern-\nulldelimiterspace} 2}} k!} \right)}}} \right| \leqslant \sqrt 2 \left\| f \right\|_\infty }\) is sharp on the class H .  相似文献   

10.
For the linear positive Korovkin operator \(f\left( x \right) \to {t_n}\left( {f;x} \right) = \frac{1}{\pi }\int_{ - \pi }^\pi {f\left( {x + t} \right)E\left( t \right)dt} \), where E(x) is the Egervary–Szász polynomial and the corresponding interpolation mean \({t_{n,N}}\left( {f;x} \right) = \frac{1}{N}\sum\limits_{k = - N}^{N - 1} {{E_n}\left( {x - \frac{{\pi k}}{N}} \right)f\left( {\frac{{\pi k}}{N}} \right)} \), the Jackson-type inequalities \(\left\| {{t_{n,N}}\left( {f;x} \right) - f\left( x \right)} \right\| \leqslant \left( {1 + \pi } \right){\omega _f}\left( {\frac{1}{n}} \right),\left\| {{t_{n,N}}\left( {f;x} \right) - f\left( x \right)} \right\| \leqslant 2{\omega _f}\left( {\frac{\pi }{{n + 1}}} \right)\), where ωf (x) denotes the modulus of continuity, are proved for N > n/2. For ωf (x) ≤ Mx, the inequality \(\left\| {{t_{n,N}}\left( {f;x} \right) - f\left( x \right)} \right\| \leqslant \frac{{\pi M}}{{n + 1}}\). is established. As a consequence, an elementary derivation of an asymptotically sharp estimate of the Kolmogorov width of a compact set of functions satisfying the Lipschitz condition is obtained.  相似文献   

11.
In the present paper, we deal with the existence and multiplicity of solutions for the following impulsive fractional boundary value problem
$$\begin{aligned} {_{t}}D_{T}^{\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t)\right) + a(t)|u(t)|^{p-2}u(t)= & {} f(t,u(t)),\;\;t\ne t_j,\;\;\hbox {a.e.}\;\;t\in [0,T],\\ \Delta \left( {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t_j)\right) \right)= & {} I_j(u(t_j))\;\;j=1,2,\ldots ,n,\\ u(0)= & {} u(T) = 0. \end{aligned}$$
where \(\alpha \in (1/p, 1]\), \(1<p<\infty \), \(0 = t_0<t_1< t_2< \cdots< t_n < t_{n+1} = T\), \(f:[0,T]\times \mathbb {R} \rightarrow \mathbb {R}\) and \(I_j : \mathbb {R} \rightarrow \mathbb {R}\), \(j = 1, \ldots , n\), are continuous functions, \(a\in C[0,T]\) and
$$\begin{aligned} \Delta \left( {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t_j)\right) \right)= & {} {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right| ^{p-2}{_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right) \\&- {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j^-)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u\left( t_j^-\right) \right) ,\\ {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right| ^{p-2}{_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right)= & {} \lim _{t \rightarrow t_j^+} {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t)\right) ,\\ {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j^-)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t_j^-)\right)= & {} \lim _{t\rightarrow t_j^-}{_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t)\right) . \end{aligned}$$
By using variational methods and critical point theory, we give some criteria to guarantee that the above-mentioned impulsive problems have at least one weak solution and a sequences of weak solutions.
  相似文献   

12.
In this paper, we give a Landesman-Lazer type theorem for periodic solutions of the asymmetric 1-dimensional p-Laplacian equation -(|x'|^p-2x')'=λ|x|^p-2x++μ|x|^p-2x-+f(t,x)with periodic boundary value.  相似文献   

13.
14.
In this paper, we prove some congruences conjectured by Z.-W. Sun: For any prime \(p>3\), we determine
$$\begin{aligned} \sum \limits _{k = 0}^{p - 1} {\frac{{{C_k}C_k^{(2)}}}{{{{27}^k}}}} \quad {\text { and }}\quad \sum \limits _{k = 1}^{p - 1} {\frac{{\left( {\begin{array}{l} {2k} \\ {k - 1} \\ \end{array}} \right) \left( { \begin{array}{l} {3k} \\ {k - 1} \\ \end{array} } \right) }}{{{{27}^k}}}} \end{aligned}$$
modulo \(p^2\), where \(C_k=\frac{1}{k+1}\left( {\begin{array}{c}2k\\ k\end{array}}\right) \) is the k-th Catalan number and \(C_k^{(2)}=\frac{1}{2k+1}\left( {\begin{array}{c}3k\\ k\end{array}}\right) \) is the second-order Catalan numbers of the first kind. And we prove that
$$\begin{aligned} \sum _{k=1}^{p-1}\frac{D_k}{k}\equiv -q_p(2)+pq_p(2)^2\pmod {p^2}, \end{aligned}$$
where \(D_n=\sum _{k=0}^{n}\left( {\begin{array}{c}n\\ k\end{array}}\right) \left( {\begin{array}{c}n+k\\ k\end{array}}\right) \) is the n-th Delannoy number and \(q_p(2)=(2^{{p-1}}-1)/p\) is the Fermat quotient.
  相似文献   

15.
We consider the stochastic differential equation (SDE) of the form
$$\begin{array}{@{}rcl@{}} \left\{\begin{array}{rcl} dX^ x(t) &=& \sigma(X(t-)) dL(t) \\ X^ x(0)&=&x,\quad x\in{\mathbb{R}}^ d, \end{array}\right. \end{array} $$
where \(\sigma :{\mathbb {R}}^ d\to {\mathbb {R}}^ d\) is globally Lipschitz continuous and L={L(t):t≥0} is a Lévy process. Under this condition on σ it is well known that the above problem has a unique solution X. Let \((\mathcal {P}_{t})_{t\ge 0}\) be the Markovian semigroup associated to X defined by \(\left ({\mathcal {P}}_{t} f\right ) (x) := \mathbb {E} \left [ f(X^ x(t))\right ]\), t≥0, \(x\in {\mathbb {R}}^{d}\), \(f\in \mathcal {B}_{b}({\mathbb {R}}^{d})\). Let B be a pseudo–differential operator characterized by its symbol q. Fix \(\rho \in \mathbb {R}\). In this article we investigate under which conditions on σ, L and q there exist two constants γ>0 and C>0 such that
$$\left| B {\mathcal{P}}_{t} u \right|_{H^{\rho}_{2}} \le C \, t^{-\gamma} \,\left| u \right|_{H^{\rho}_{2}}, \quad \forall u \in {H^{\rho}_{2}}(\mathbb{R}^{d} ),\, t>0. $$
  相似文献   

16.
The paper proves that for any ε > 0 there exists ameasurable set E ? [0, 1] with measure |E| > 1 ? ε such that for each f ∈ L1[0, 1] there is a function \(\tilde f \in {L^1}\left[ {0,1} \right]\) coinciding with f on E whose Fourier-Walsh series converges to \(\tilde f\) in L1[0, 1]-norm, and the sequence \(\left\{ {\left| {{c_k}\left( {\tilde f} \right)} \right|} \right\}_{n = 0}^\infty \) is monotonically decreasing, where \(\left\{ {{c_k}\left( {\tilde f} \right)} \right\}\) is the sequence of Fourier-Walsh coefficients of \(\left\{ {\left| {{c_k}\left( {\tilde f} \right)} \right|} \right\}_{n = 0}^\infty \).  相似文献   

17.
Let \(\mu \) and \(\nu \) be measures supported on \(\left( -1,1\right) \) with corresponding orthonormal polynomials \(\left\{ p_{n}^{\mu }\right\} \) and \( \left\{ p_{n}^{\nu }\right\} \), respectively. Define the mixed kernel
$$\begin{aligned} K_{n}^{{\mu },\nu }\left( x,y\right) =\sum _{j=0}^{n-1}p_{j}^{\mu }\left( x\right) p_{j}^{\nu }\left( y\right) . \end{aligned}$$
We establish scaling limits such as
$$\begin{aligned}&\lim _{n\rightarrow \infty }\frac{\pi \sqrt{1-\xi ^{2}}\sqrt{\mu ^{\prime }\left( \xi \right) \nu ^{\prime }\left( \xi \right) }}{n}K_{n}^{\mu ,\nu }\left( \xi +\frac{a\pi \sqrt{1-\xi ^{2}}}{n},\xi +\frac{b\pi \sqrt{1-\xi ^{2}}}{n}\right) \\&\quad =S\left( \frac{\pi \left( a-b\right) }{2}\right) \cos \left( \frac{\pi \left( a-b\right) }{2}+B\left( \xi \right) \right) , \end{aligned}$$
where \(S\left( t\right) =\frac{\sin t}{t}\) is the sinc kernel, and \(B\left( \xi \right) \) depends on \({\mu },\nu \) and \(\xi \). This reduces to the classical universality limit in the bulk when \(\mu =\nu \). We deduce applications to the zero distribution of \(K_{n}^{{\mu },\nu }\), and asymptotics for its derivatives.
  相似文献   

18.
The Schur-Szegö composition of two polynomials \(f\left( z \right) = \sum\nolimits_{j = 0}^n {{A_j}{z^j}} \) and \(g\left( z \right) = \sum\nolimits_{j = 0}^n {{B_j}{z^j}} \), both of degree n, is defined by \(f * g\left( z \right) = \sum\nolimits_{j = 0}^n {{A_j}{B_j}{{\left( {\begin{array}{*{20}{c}}n \\ j \end{array}} \right)}^{ - 1}}{z^j}} \). In this paper, we estimate the minimum and the maximum of the modulus of f * g(z) on z = 1 and thereby obtain results analogues to Bernstein type inequalities for polynomials.  相似文献   

19.
Let \(\Omega \) be a smooth bounded domain in \(\mathbb R^n\) with \(n\ge 2\), \(W^{1,n}_0(\Omega )\) be the usual Sobolev space on \(\Omega \) and define \(\lambda _1(\Omega ) = \inf \nolimits _{u\in W^{1,n}_0(\Omega )\setminus \{0\}}\frac{\int _\Omega |\nabla u|^n \mathrm{d}x}{\int _\Omega |u|^n \mathrm{d}x}\). Based on the blow-up analysis method, we shall establish the following improved Moser–Trudinger inequality of Tintarev type
$$\begin{aligned} \sup _{u\in W^{1,n}_0(\Omega ), \int _\Omega |\nabla u|^n \mathrm{{d}}x-\alpha \int _\Omega |u|^n \mathrm{{d}}x \le 1} \int _\Omega \exp (\alpha _{n} |u|^{\frac{n}{n-1}}) \mathrm{{d}}x < \infty , \end{aligned}$$
for any \(0 \le \alpha < \lambda _1(\Omega )\), where \(\alpha _{n} = n \omega _{n-1}^{\frac{1}{n-1}}\) with \(\omega _{n-1}\) being the surface area of the unit sphere in \(\mathbb R^n\). This inequality is stronger than the improved Moser–Trudinger inequality obtained by Adimurthi and Druet (Differ Equ 29:295–322, 2004) in dimension 2 and by Yang (J Funct Anal 239:100–126, 2006) in higher dimension and extends a result of Tintarev (J Funct Anal 266:55–66, 2014) in dimension 2 to higher dimension. We also prove that the supremum above is attained for any \(0< \alpha < \lambda _{1}(\Omega )\). (The case \(\alpha =0\) corresponding to the Moser–Trudinger inequality is well known.)
  相似文献   

20.
Let \(F(X,Y)=\sum \nolimits _{i=0}^sa_iX^{r_i}Y^{r-r_i}\in {\mathbb {Z}}[X,Y]\) be a form of degree \(r=r_s\ge 3\), irreducible over \({\mathbb {Q}}\) and having at most \(s+1\) non-zero coefficients. Mueller and Schmidt showed that the number of solutions of the Thue inequality
$$\begin{aligned} |F(X,Y)|\le h \end{aligned}$$
is \(\ll s^2h^{2/r}(1+\log h^{1/r})\). They conjectured that \(s^2\) may be replaced by s. Let
$$\begin{aligned} \Psi = \max _{0\le i\le s} \max \left( \sum _{w=0}^{i-1} \frac{1}{r_i-r_w},\sum _{w= i+1}^{s}\frac{1}{r_w-r_i}\right) . \end{aligned}$$
Then we show that \(s^2\) may be replaced by \(\max (s\log ^3s, se^{\Psi })\). We also show that if \(|a_0|=|a_s|\) and \(|a_i|\le |a_0|\) for \(1\le i\le s-1\), then \(s^2\) may be replaced by \(s\log ^{3/2}s\). In particular, this is true if \(a_i\in \{-1,1\}\).
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号