首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The skeleton of a polyhedral set is the union of its edges and vertices. Let \(\mathcal {P}\) be a set of fat, convex polytopes in three dimensions with n vertices in total, and let f max be the maximum complexity of any face of a polytope in \(\mathcal {P}\). We prove that the total length of the skeleton of the union of the polytopes in \(\mathcal {P}\) is at most O(α(n)?log? n?logf max) times the sum of the skeleton lengths of the individual polytopes.  相似文献   

2.
TheMonotone Upper Bound Problem (Klee, 1965) asks if the maximal numberM(d,n) of vertices in a monotone path along edges of ad-dimensional polytope withn facets can be as large as conceivably possible: IsM(d,n)=M ubt (d,n), the maximal number of vertices that ad-polytope withn facets can have according to the Upper Bound Theorem?We show that in dimensiond=4, the answer is “yes”, despite the fact that it is “no” if we restrict ourselves to the dual-to-cyclic polytopes. For eachn≥5, we exhibit a realization of a polar-to-neighborly 4-dimensional polytope withn facets and a Hamilton path through its vertices that is monotone with respect to a linear objective function.This constrasts an earlier result, by which no polar-to-neighborly 6-dimensional polytope with 9 facets admits a monotone Hamilton path.  相似文献   

3.
Given a tournament T?=?(X, A), we consider two tournament solutions applied to T: Slater’s solution and Copeland’s solution. Slater’s solution consists in determining the linear orders obtained by reversing a minimum number of directed edges of T in order to make T transitive. Copeland’s solution applied to T ranks the vertices of T according to their decreasing out-degrees. The aim of this paper is to compare the results provided by these two methods: to which extent can they lead to different orders? We consider three cases: T is any tournament, T is strongly connected, T has only one Slater order. For each one of these three cases, we specify the maximum of the symmetric difference distance between Slater orders and Copeland orders. More precisely, thanks to a result dealing with arc-disjoint circuits in circular tournaments, we show that this maximum is equal to n(n???1)/2 if T is any tournament on an odd number n of vertices, to (n 2???3n?+?2)/2 if T is any tournament on an even number n of vertices, to n(n???1)/2 if T is strongly connected with an odd number n of vertices, to (n 2???3n???2)/2 if T is strongly connected with an even number n of vertices greater than or equal to 8, to (n 2???5n?+?6)/2 if T has an odd number n of vertices and only one Slater order, to (n 2???5n?+?8)/2 if T has an even number n of vertices and only one Slater order.  相似文献   

4.
Erdoes and Soes conjectured in 1963 that every graph G on n vertices with edge number e(G) 〉 1/2(k - 1)n contains every tree T with k edges as a subgraph. In this paper, we consider a variation of the above conjecture, that is, for n 〉 9/ 2k^2 + 37/2+ 14 and every graph G on n vertices with e(G) 〉 1/2 (k- 1)n, we prove that there exists a graph G' on n vertices having the same degree sequence as G and containing every tree T with k edges as a subgraph.  相似文献   

5.
For a (molecular) graph, the first Zagreb index M 1 is equal to the sum of squares of the vertex degrees, and the second Zagreb index M 2 is equal to the sum of products of degrees of pairs of adjacent vertices. In this paper, we show that all connected graphs with n vertices and k cut edges, the maximum (resp. minimum) M 1- and M 2-value are obtained, respectively, and uniquely, at K n k (resp. P n k ), where K n k is a graph obtained by joining k independent vertices to one vertex of K n?k and P n k is a graph obtained by connecting a pendent path P k+1 to one vertex of C n?k.  相似文献   

6.
We study the computational complexity of the vertex cover problem in the class of planar graphs (planar triangulations) admitting a plane representation whose faces are triangles. It is shown that the problem is strongly NP-hard in the class of 4-connected planar triangulations in which the degrees of vertices are of order O(log n), where n is the number of vertices, and in the class of plane 4-connected Delaunay triangulations based on the Minkowski triangular distance. A pair of vertices in such a triangulation is adjacent if and only if there is an equilateral triangle ?(p, λ) with pR2 and λ > 0 whose interior does not contain triangulation vertices and whose boundary contains this pair of vertices and only it, where ?(p, λ) = p + λ? = {xR2: x = p + λa, a ∈ ?}; here ? is the equilateral triangle with unit sides such that its barycenter is the origin and one of the vertices belongs to the negative y-axis. Keywords: computational complexity, Delaunay triangulation, Delaunay TD-triangulation.  相似文献   

7.
We show that for every ? > 0 there exist δ > 0 and n0 ∈ ? such that every 3-uniform hypergraph on nn0 vertices with the property that every k-vertex subset, where kδn, induces at least \(\left( {\frac{1}{2} + \varepsilon } \right)\left( {\begin{array}{*{20}c} k \\ 3 \\ \end{array} } \right)\) edges, contains K4? as a subgraph, where K4? is the 3-uniform hypergraph on 4 vertices with 3 edges. This question was originally raised by Erd?s and Sós. The constant 1/4 is the best possible.  相似文献   

8.
The cube graph Q n is the skeleton of the n-dimensional cube. It is an n-regular graph on 2 n vertices. The Ramsey number r(Q n ;K s ) is the minimum N such that every graph of order N contains the cube graph Q n or an independent set of order s. In 1983, Burr and Erd?s asked whether the simple lower bound r(Q n ;K s )≥(s?1)(2 n ?1)+1 is tight for s fixed and n sufficiently large. We make progress on this problem, obtaining the first upper bound which is within a constant factor of the lower bound.  相似文献   

9.
The classical hypercube structure is a popular topological architecture in parallel computing environments and a large number of variations based on the hypercube were posed in the past three decades. Reliability evaluation of systems is important to the design and maintenance of multiprocessor systems. The h-extra edge-connectivity of graph G(V, E) is a kind of measure for the reliability of interconnection systems, which is defined as the minimum cardinality of a subset of edge set, if any, whose deletion disconnects G and such that every remaining component has at least h vertices. This paper shows that the h-extra edge-connectivity of the hypercube Qn is a constant 2~(n-1) for2~(n-1)/3 h ≤ 2~(n-1), and n ≥ 4, which extends the result of ["Bounding the size of the subgraph induced by m vertices and extra edge-connectivity of hypercubes, Discrete Applied Mathematics, 2013, 161(16): 2753-2757"].  相似文献   

10.
To untangle a geometric graph means to move some of the vertices so that the resulting geometric graph has no crossings. Pach and Tardos (Discrete Comput. Geom. 28(4): 585–592, 2002) asked if every n-vertex geometric planar graph can be untangled while keeping at least n ε vertices fixed. We answer this question in the affirmative with ε=1/4. The previous best known bound was \(\Omega(\sqrt{\log n/\log\log n})\). We also consider untangling geometric trees. It is known that every n-vertex geometric tree can be untangled while keeping at least \(\Omega(\sqrt{n})\) vertices fixed, while the best upper bound was \(\mathcal{O}((n\log n)^{2/3})\). We answer a question of Spillner and Wolff (http://arxiv.org/abs/0709.0170) by closing this gap for untangling trees. In particular, we show that for infinitely many values of n, there is an n-vertex geometric tree that cannot be untangled while keeping more than \(3(\sqrt{n}-1)\) vertices fixed.  相似文献   

11.
The three-in-a-tree algorithm of Chudnovsky and Seymour decides in time O(n 4) whether three given vertices of a graph belong to an induced tree. Here, we study four-in- a-tree for triangle-free graphs. We give a structural answer to the following question: what does a triangle-free graph look like if no induced tree covers four given vertices? Our main result says that any such graph must have the “same structure”, in a sense to be defined precisely, as a square or a cube. We provide an O(nm)-time algorithm that given a triangle-free graph G together with four vertices outputs either an induced tree that contains them or a partition of V(G) certifying that no such tree exists. We prove that the problem of deciding whether there exists a tree T covering the four vertices such that at most one vertex of T has degree at least 3 is NP-complete.  相似文献   

12.
For any two positive integers n and k ? 2, let G(n, k) be a digraph whose set of vertices is {0, 1, …, n ? 1} and such that there is a directed edge from a vertex a to a vertex b if a k b (mod n). Let \(n = \prod\nolimits_{i = 1}^r {p_i^{{e_i}}} \) be the prime factorization of n. Let P be the set of all primes dividing n and let P 1, P 2 ? P be such that P 1P 2 = P and P 1P 2 = ?. A fundamental constituent of G(n, k), denoted by \(G_{{P_2}}^*(n,k)\), is a subdigraph of G(n, k) induced on the set of vertices which are multiples of \(\prod\nolimits_{{p_i} \in {P_2}} {{p_i}} \) and are relatively prime to all primes qP 1. L. Somer and M. K?i?ek proved that the trees attached to all cycle vertices in the same fundamental constituent of G(n, k) are isomorphic. In this paper, we characterize all digraphs G(n, k) such that the trees attached to all cycle vertices in different fundamental constituents of G(n, k) are isomorphic. We also provide a necessary and sufficient condition on G(n, k) such that the trees attached to all cycle vertices in G(n, k) are isomorphic.  相似文献   

13.
We consider higher-dimensional generalizations of the normalized Laplacian and the adjacency matrix of graphs and study their eigenvalues for the Linial–Meshulam model Xk(n, p) of random k-dimensional simplicial complexes on n vertices. We show that for p = Ω(logn/n), the eigenvalues of each of the matrices are a.a.s. concentrated around two values. The main tool, which goes back to the work of Garland, are arguments that relate the eigenvalues of these matrices to those of graphs that arise as links of (k - 2)-dimensional faces. Garland’s result concerns the Laplacian; we develop an analogous result for the adjacency matrix.  相似文献   

14.
Let S be a subset of a finite abelian group G. The Cayley sum graph Cay+(G, S) of G with respect to S is a graph whose vertex set is G and two vertices g and h are joined by an edge if and only if g + hS. We call a finite abelian group G a Cayley sum integral group if for every subset S of G, Cay+(G, S) is integral i.e., all eigenvalues of its adjacency matrix are integers. In this paper, we prove that all Cayley sum integral groups are represented by Z3 and Zn2 n, n ≥ 1, where Zk is the group of integers modulo k. Also, we classify simple connected cubic integral Cayley sum graphs.  相似文献   

15.
Let G be a 2-edge-connected simple graph on n vertices. For an edge e = uvE(G), define d(e) = d(u) + d(v). Let F denote the set of all simple 2-edge-connected graphs on n ≥ 4 vertices such that GF if and only if d(e) + d(e’) ≥ 2n for every pair of independent edges e, e’ of G. We prove in this paper that for each GF, G is not Z 3-connected if and only if G is one of K 2,n?2, K 3,n?3, K 2,n?2 + , K 3,n?3 + or one of the 16 specified graphs, which generalizes the results of X. Zhang et al. [Discrete Math., 2010, 310: 3390–3397] and G. Fan and X. Zhou [Discrete Math., 2008, 308: 6233–6240].  相似文献   

16.
For a graph G, we denote by p(G) and c(G) the number of vertices of a longest path and a longest cycle in G, respectively. For a vertex v in G, id(v) denotes the implicit degree of v. In this paper, we obtain that if G is a 2-connected graph on n vertices such that the implicit degree sum of any three independent vertices is at least n + 1, then either G contains a hamiltonian path, or c(G) ≥ p(G) ? 1.  相似文献   

17.
In this paper we prove the following conjecture by Bollobás and Komlós: For every γ > 0 and integers r ≥ 1 and Δ, there exists β > 0 with the following property. If G is a sufficiently large graph with n vertices and minimum degree at least ((r ? 1)/r + γ)n and H is an r-chromatic graph with n vertices, bandwidth at most β n and maximum degree at most Δ, then G contains a copy of H.  相似文献   

18.
The cubical dimension of a graph G is the smallest dimension of a hypercube into which G is embeddable as a subgraph. The conjecture of Havel (1984) claims that the cubical dimension of every balanced binary tree with 2 n vertices, n ? 1, is n. The 2-rooted complete binary tree of depth n is obtained from two copies of the complete binary tree of depth n by adding an edge linking their respective roots. In this paper, we determine the cubical dimension of trees obtained by subdividing twice a 2-rooted complete binary tree and prove that every such balanced tree satisfies the conjecture of Havel.  相似文献   

19.
The kth power of a cycle C is the graph obtained from C by joining every pair of vertices with distance at most k on C. The second power of a cycle is called a square cycle. Pósa conjectured that every graph with minimum degree at least 2n/3 contains a hamiltonian square cycle. Later, Seymour proposed a more general conjecture that if G is a graph with minimum degree at least (kn)/(k + 1), then G contains the kth power of a hamiltonian cycle. Here we prove an Ore-type version of Pósa’s conjecture that if G is a graph in which deg(u) + deg(v) ≥ 4n/3 ? 1/3 for all non-adjacent vertices u and v, then for sufficiently large n, G contains a hamiltonian square cycle unless its minimum degree is exactly n/3 + 2 or n/3 + 5/3. A consequence of this result is an Ore-type analogue of a theorem of Aigner and Brandt.  相似文献   

20.
In the problem of covering an n-vertex graph by m cycles of maximum total weight, it is required to find a family of m vertex-nonadjacent cycles such that it covers all vertices of the graph and the total weight of edges in the cover is maximum. The paper presents an algorithm for approximately solving the problem of covering a graph in Euclidean d-space Rd by m nonadjacent cycles of maximum total weight. The algorithm has time complexity O(n3). An estimate of the accuracy of the algorithm depending on the parameters d, m, and n is substantiated; it is shown that if the dimension d of the space is fixed and the number of covering cycles is m = o(n), then the algorithm is asymptotically exact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号