首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
For a graph G=(V(G),E(G)), a strong edge coloring of G is an edge coloring in which every color class is an induced matching. The strong chromatic index of G, χs(G), is the smallest number of colors in a strong edge coloring of G. The strong chromatic index of the random graph G(n,p) was considered in Discrete Math. 281 (2004) 129, Austral. J. Combin. 10 (1994) 97, Austral. J. Combin. 18 (1998) 219 and Combin. Probab. Comput. 11 (1) (2002) 103. In this paper, we consider χs(G) for a related class of graphs G known as uniform or ε-regular graphs. In particular, we prove that for 0<ε?d<1, all (d,ε)-regular bipartite graphs G=(UV,E) with |U|=|V|?n0(d,ε) satisfy χs(G)?ζ(ε)Δ(G)2, where ζ(ε)→0 as ε→0 (this order of magnitude is easily seen to be best possible). Our main tool in proving this statement is a powerful packing result of Pippenger and Spencer (Combin. Theory Ser. A 51(1) (1989) 24).  相似文献   

2.
Béla Csaba 《Discrete Mathematics》2008,308(19):4322-4331
Call a simple graph H of order nwell-separable, if by deleting a separator set of size o(n) the leftover will have components of size at most o(n). We prove, that bounded degree well-separable spanning subgraphs are easy to embed: for every γ>0 and positive integer Δ there exists an n0 such that if n>n0, Δ(H)?Δ for a well-separable graph H of order n and δ(G)?(1-1/2(χ(H)-1)+γ)n for a simple graph G of order n, then HG. We extend our result to graphs with small band-width, too.  相似文献   

3.
Weifan Wang 《Discrete Mathematics》2009,309(11):3523-3533
Let G be a graph embedded in a surface of characteristic zero with maximum degree Δ. The edge-face chromatic number χef(G) of G is the least number of colors such that any two adjacent edges, adjacent faces, incident edge and face have different colors. In this paper, we prove that χef(G)≤Δ+1 if Δ≥13, χef(G)≤Δ+2 if Δ≥12, χef(G)≤Δ+3 if Δ≥4, and χef(G)≤7 if Δ≤3.  相似文献   

4.
Let F(n,e) be the collection of all simple graphs with n vertices and e edges, and for GF(n,e) let P(G;λ) be the chromatic polynomial of G. A graph GF(n,e) is said to be optimal if another graph HF(n,e) does not exist with P(H;λ)?P(G;λ) for all λ, with strict inequality holding for some λ. In this paper we derive necessary conditions for bipartite graphs to be optimal, and show that, contrarily to the case of lower bounds, one can find values of n and e for which optimal graphs are not unique. We also derive necessary conditions for bipartite graphs to have the greatest number of cycles of length 4.  相似文献   

5.
Let G be a graph. The core of G, denoted by G Δ, is the subgraph of G induced by the vertices of degree Δ(G), where Δ(G) denotes the maximum degree of G. A k -edge coloring of G is a function f : E(G) → L such that |L| = k and f (e 1) ≠ f (e 2) for all two adjacent edges e 1 and e 2 of G. The chromatic index of G, denoted by χ′(G), is the minimum number k for which G has a k-edge coloring. A graph G is said to be Class 1 if χ′(G) = Δ(G) and Class 2 if χ′(G) = Δ(G) + 1. In this paper it is shown that every connected graph G of even order whose core is a cycle of order at most 13 is Class 1.  相似文献   

6.
The total chromatic number χT(G) is the least number of colours needed to colour the vertices and edges of a graph G such that no incident or adjacent elements (vertices or edges) receive the same colour. The Total Colouring Conjecture (TCC) states that for every simple graph G, χT(G)?Δ(G)+2. This work verifies the TCC for powers of cycles even and 2<k<n/2, showing that there exists and can be polynomially constructed a (Δ(G)+2)-total colouring for these graphs.  相似文献   

7.
A celebrated result of Chvátal, Rödl, Szemerédi and Trotter states (in slightly weakened form) that, for every natural number Δ, there is a constant r Δ such that, for any connected n-vertex graph G with maximum degree Δ, the Ramsey number R(G,G) is at most r Δ n, provided n is sufficiently large. In 1987, Burr made a strong conjecture implying that one may take r Δ = Δ. However, Graham, Rödl and Ruciński showed, by taking G to be a suitable expander graph, that necessarily r Δ > 2 for some constant c>0. We show that the use of expanders is essential: if we impose the additional restriction that the bandwidth of G be at most some function β(n)=o(n), then R(G,G)≤(2χ(G)+4)n≤(2Δ+6)n, i.e., r Δ =2Δ+6 suffices. On the other hand, we show that Burr’s conjecture itself fails even for P n k , the kth power of a path P n . Brandt showed that for any c, if Δ is sufficiently large, there are connected n-vertex graphs G with Δ(G)≤Δ but R(G,K 3) > cn. We show that, given Δ and H, there are β>0 and n 0 such that, if G is a connected graph on nn 0 vertices with maximum degree at most Δ and bandwidth at most β n , then we have R(G,H)=(χ(H)?1)(n?1)+σ(H), where σ(H) is the smallest size of any part in any χ(H)-partition of H. We also show that the same conclusion holds without any restriction on the maximum degree of G if the bandwidth of G is at most ?(H) log n=log logn.  相似文献   

8.
Charles Dunn 《Order》2012,29(3):507-512
Let k be a positive integer, d be a nonnegative integer, and G be a finite graph. Two players, Alice and Bob, play a game on G by coloring the uncolored vertices with colors from a set X of k colors. At all times, the subgraph induced by a color class must have maximum degree at most d. Alice wins the game if all vertices are eventually colored; otherwise, Bob wins. The least k such that Alice has a winning strategy is called the d-relaxed game chromatic number of G, denoted ?? g d (G). It is known that there exist graphs such that ?? g 0(G)?=?3, but ?? g 1(G)?>?3. We will show that for all positive integers m, there exists a complete multipartite graph G such that m?????? g 0(G)?<??? g 1(G).  相似文献   

9.
Let G=(V,E) be a graph. A set SV is a restrained dominating set (RDS) if every vertex not in S is adjacent to a vertex in S and to a vertex in V?S. The restrained domination number of G, denoted by γr(G), is the minimum cardinality of an RDS of G. A set SV is a total dominating set (TDS) if every vertex in V is adjacent to a vertex in S. The total domination number of a graph G without isolated vertices, denoted by γt(G), is the minimum cardinality of a TDS of G.Let δ and Δ denote the minimum and maximum degrees, respectively, in G. If G is a graph of order n with δ?2, then it is shown that γr(G)?n-Δ, and we characterize the connected graphs with δ?2 achieving this bound that have no 3-cycle as well as those connected graphs with δ?2 that have neither a 3-cycle nor a 5-cycle. Cockayne et al. [Total domination in graphs, Networks 10 (1980) 211-219] showed that if G is a connected graph of order n?3 and Δ?n-2, then γt(G)?n-Δ. We further characterize the connected graphs G of order n?3 with Δ?n-2 that have no 3-cycle and achieve γt(G)=n-Δ.  相似文献   

10.
For an ordered set W = {w 1, w 2,..., w k} of vertices and a vertex v in a connected graph G, the representation of v with respect to W is the k-vector r(v|W) = (d(v, w 1), d(v, w 2),... d(v, w k)), where d(x, y) represents the distance between the vertices x and y. The set W is a resolving set for G if distinct vertices of G have distinct representations with respect to W. A resolving set for G containing a minimum number of vertices is a basis for G. The dimension dim(G) is the number of vertices in a basis for G. A resolving set W of G is connected if the subgraph 〈W〉 induced by W is a nontrivial connected subgraph of G. The minimum cardinality of a connected resolving set in a graph G is its connected resolving number cr(G). Thus 1 ≤ dim(G) ≤ cr(G) ≤ n?1 for every connected graph G of order n ≥ 3. The connected resolving numbers of some well-known graphs are determined. It is shown that if G is a connected graph of order n ≥ 3, then cr(G) = n?1 if and only if G = K n or G = K 1,n?1. It is also shown that for positive integers a, b with ab, there exists a connected graph G with dim(G) = a and cr(G) = b if and only if $\left( {a,b} \right) \notin \left\{ {\left( {1,k} \right):k = 1\;{\text{or}}\;k \geqslant 3} \right\}$ Several other realization results are present. The connected resolving numbers of the Cartesian products G × K 2 for connected graphs G are studied.  相似文献   

11.
For two graphs G and H, let the mixed anti-Ramsey numbers, maxR(n;G,H), (minR(n;G,H)) be the maximum (minimum) number of colors used in an edge-coloring of a complete graph with n vertices having no monochromatic subgraph isomorphic to G and no totally multicolored (rainbow) subgraph isomorphic to H. These two numbers generalize the classical anti-Ramsey and Ramsey numbers, respectively.We show that maxR(n;G,H), in most cases, can be expressed in terms of vertex arboricity of H and it does not depend on the graph G. In particular, we determine maxR(n;G,H) asymptotically for all graphs G and H, where G is not a star and H has vertex arboricity at least 3.In studying minR(n;G,H) we primarily concentrate on the case when G=H=K3. We find minR(n;K3,K3) exactly, as well as all extremal colorings. Among others, by investigating minR(n;Kt,K3), we show that if an edge-coloring of Kn in k colors has no monochromatic Kt and no rainbow triangle, then n?2kt2.  相似文献   

12.
Let G be a graph of nonnegative characteristic and let g(G) and Δ(G) be its girth and maximum degree, respectively. We show that G has an edge-partition into a forest and a subgraph H so that (1) Δ(H)?1 if g(G)?11; (2) Δ(H)?2 if g(G)?7; (3) Δ(H)?4 if either g(G)?5 or G does not contain 4-cycles and 5-cycles; (4) Δ(H)?6 if G does not contain 4-cycles. These results are applied to find the following upper bounds for the game coloring number colg(G) of G: (1) colg(G)?5 if g(G)?11; (2) colg(G)?6 if g(G)?7; (3) colg(G)?8 if either g(G)?5 or G contains no 4-cycles and 5-cycles; (4) colg(G)?10 if G does not contain 4-cycles.  相似文献   

13.
Let G be a 2-edge-connected simple graph on n vertices. For an edge e = uvE(G), define d(e) = d(u) + d(v). Let F denote the set of all simple 2-edge-connected graphs on n ≥ 4 vertices such that GF if and only if d(e) + d(e’) ≥ 2n for every pair of independent edges e, e’ of G. We prove in this paper that for each GF, G is not Z 3-connected if and only if G is one of K 2,n?2, K 3,n?3, K 2,n?2 + , K 3,n?3 + or one of the 16 specified graphs, which generalizes the results of X. Zhang et al. [Discrete Math., 2010, 310: 3390–3397] and G. Fan and X. Zhou [Discrete Math., 2008, 308: 6233–6240].  相似文献   

14.
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic (2-colored) cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a(G). Let Δ=Δ(G) denote the maximum degree of a vertex in a graph G. A complete bipartite graph with n vertices on each side is denoted by Kn,n. Alon, McDiarmid and Reed observed that a(Kp−1,p−1)=p for every prime p. In this paper we prove that a(Kp,p)≤p+2=Δ+2 when p is prime. Basavaraju, Chandran and Kummini proved that a(Kn,n)≥n+2=Δ+2 when n is odd, which combined with our result implies that a(Kp,p)=p+2=Δ+2 when p is an odd prime. Moreover we show that if we remove any edge from Kp,p, the resulting graph is acyclically Δ+1=p+1-edge-colorable.  相似文献   

15.
Let M be a multigraph. Vizing (Kibernetika (Kiev)1 (1965), 29–39) proved that χ′(M)≤Δ(M)+μ(M). Here it is proved that if χ′(M)≥Δ(M)+s, where 12(μ(M) + 1) < s then M contains a 2s-sided triangle. In particular, (C′) if μ(M)≤2 and M does not contain a 4-sided triangle then χ′(M)≤Δ(M) + 1. Javedekar (J. Graph Theory4 (1980), 265–268) had conjectured that (C) if G is a simple graph that does not induce K1,3 or K5?e then χ(G)≤ω(G) + 1. The author and Schmerl (Discrete Math.45 (1983), 277–285) proved that (C′) implies (C); thus Javedekar's conjecture is true.  相似文献   

16.
The eccentricity e(v) of v is the distance to a farthest vertex from v. The radius r(G) is the minimum eccentricity among the vertices of G and the diameter d(G) is the maximum eccentricity. For graph Ge obtained by deleting edge e in G, we have r(Ge)?r(G) and d(Ge)?d(G). If for all e in G, r(Ge)=r(G), then G is radius-edge-invariant. Similarly, if for all e in G, d(Ge)=d(G), then G is diameter-edge-invariant. In this paper, we study radius-edge-invariant and diameter-edge-invariant graphs and obtain characterizations of radius-edge-invariant graphs and diameter-edge-invariant graphs of diameter two.  相似文献   

17.
For k?0, ?k(G) denotes the Lick-White vertex partition number of G. A graph G is called (n, k)-critical if it is connected and for each edge e of G?k(G–e)<?k(G)=n. We describe all (2, k)-critical graphs and for n?3,k?1 we extend and simplify a result of Bollobás and Harary giving one construction of a family of (n, k)-critical graphs of every possible order.  相似文献   

18.
The stable Kneser graph SGn,k, n?1, k?0, introduced by Schrijver (1978) [19], is a vertex critical graph with chromatic number k+2, its vertices are certain subsets of a set of cardinality m=2n+k. Björner and de Longueville (2003) [5] have shown that its box complex is homotopy equivalent to a sphere, Hom(K2,SGn,k)?Sk. The dihedral group D2m acts canonically on SGn,k, the group C2 with 2 elements acts on K2. We almost determine the (C2×D2m)-homotopy type of Hom(K2,SGn,k) and use this to prove the following results.The graphs SG2s,4 are homotopy test graphs, i.e. for every graph H and r?0 such that Hom(SG2s,4,H) is (r−1)-connected, the chromatic number χ(H) is at least r+6.If k∉{0,1,2,4,8} and n?N(k) then SGn,k is not a homotopy test graph, i.e. there are a graph G and an r?1 such that Hom(SGn,k,G) is (r−1)-connected and χ(G)<r+k+2.  相似文献   

19.
Given a graph G and integers p,q,d1 and d2, with p>q, d2>d1?1, an L(d1,d2;p,q)-labeling of G is a function f:V(G)→{0,1,2,…,n} such that |f(u)−f(v)|?p if dG(u,v)?d1 and |f(u)−f(v)|?q if dG(u,v)?d2. A k-L(d1,d2;p,q)-labeling is an L(d1,d2;p,q)-labeling f such that maxvV(G)f(v)?k. The L(d1,d2;p,q)-labeling number ofG, denoted by , is the smallest number k such that G has a k-L(d1,d2;p,q)-labeling. In this paper, we give upper bounds and lower bounds of the L(d1,d2;p,q)-labeling number for general graphs and some special graphs. We also discuss the L(d1,d2;p,q)-labeling number of G, when G is a path, a power of a path, or Cartesian product of two paths.  相似文献   

20.
When we wish to compute lower bounds for the chromatic number χ(G) of a graph G, it is of interest to know something about the ‘chromatic forcing number’ fχ(G), which is defined to be the least number of vertices in a subgraph H of G such that χ(H) = χ(G). We show here that for random graphs Gn,p with n vertices, fχ(Gn,p) is almost surely at least (12?ε)n, despite say the fact that the largest complete subgraph of Gn,p has only about log n vertices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号