首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 61 毫秒
1.
This paper considers an infinite-time optimal damping control problem for a class of nonlinear systems with sinusoidal disturbances. A successive approximation approach (SAA) is applied to design feedforward and feedback optimal controllers. By using the SAA, the original optimal control problem is transformed into a sequence of nonhomogeneous linear two-point boundary value (TPBV) problems. The existence and uniqueness of the optimal control law are proved. The optimal control law is derived from a Riccati equation, matrix equations and an adjoint vector sequence, which consists of accurate linear feedforward and feedback terms and a nonlinear compensation term. And the nonlinear compensation term is the limit of the adjoint vector sequence. By using a finite term of the adjoint vector sequence, we can get an approximate optimal control law. A numerical example shows that the algorithm is effective and robust with respect to sinusoidal disturbances.  相似文献   

2.
Stability results are given for a class of feedback systems arising from the regulation of time-varying discrete-time systems using optimal infinite-horizon and moving-horizon feedback laws. The class is characterized by joint constraints on the state and the control, a general nonlinear cost function and nonlinear equations of motion possessing two special properties. It is shown that weak conditions on the cost function and the constraints are sufficient to guarantee uniform asymptotic stability of both the optimal infinite-horizon and moving-horizon feedback systems. The infinite-horizon cost associated with the moving-horizon feedback law approaches the optimal infinite-horizon cost as the moving horizon is extended.  相似文献   

3.
We address finding the semi-global solutions to optimal feedback control and the Hamilton–Jacobi–Bellman (HJB) equation. Using the solution of an HJB equation, a feedback optimal control law can be implemented in real-time with minimum computational load. However, except for systems with two or three state variables, using traditional techniques for numerically finding a semi-global solution to an HJB equation for general nonlinear systems is infeasible due to the curse of dimensionality. Here we present a new computational method for finding feedback optimal control and solving HJB equations which is able to mitigate the curse of dimensionality. We do not discretize the HJB equation directly, instead we introduce a sparse grid in the state space and use the Pontryagin’s maximum principle to derive a set of necessary conditions in the form of a boundary value problem, also known as the characteristic equations, for each grid point. Using this approach, the method is spatially causality free, which enjoys the advantage of perfect parallelism on a sparse grid. Compared with dense grids, a sparse grid has a significantly reduced size which is feasible for systems with relatively high dimensions, such as the 6-D system shown in the examples. Once the solution obtained at each grid point, high-order accurate polynomial interpolation is used to approximate the feedback control at arbitrary points. We prove an upper bound for the approximation error and approximate it numerically. This sparse grid characteristics method is demonstrated with three examples of rigid body attitude control using momentum wheels.  相似文献   

4.
研究一类具有非线性不确定参数的非线性系统的自适应模型参考跟踪问题.假设系统的非线性项关于不确定参数是凸或凹的.去掉了在先前有关研究中要求参考模型矩阵有小于零的实特征值的条件.既考虑了状态反馈控制方式,也考虑了输出反馈控制方式.在采用输出反馈控制时,假设非线性项满足李普希兹条件,但李普希兹常数未知.基于一种极大极小方法,提出了一种自适应控制器的设计方法.控制器是连续的,能保证闭环系统的所有变量有界,并且渐近精确跟踪参考模型.举例说明了本结论的有用性.  相似文献   

5.
最速反馈控制的不变性   总被引:2,自引:0,他引:2  
变结构控制对系统模型和扰动具有一定的不变性是众所周知的事实。最速反馈控制是以其开关曲线为滑动曲线的变结构控制。本文用变结构控制理论来讨论修正了的最速反馈控制对一定范围的系统扰动具有完全的不变性,即完全能够抑制一定范围的扰动作用,而且闭环系统的所有轨线,在理论上,都以有限时间到达原点。这就为设计高效非线性反馈提供了一条有效途径,还给出了避免高频颤震来实现最速反馈控制的数字化办法。  相似文献   

6.
This paper deals with the optimal output tracking control (OOTC) problem of a class of nonlinear systems whose reference input to be tracked is produced by a generalized linear exosystem. To solve the nonlinear OOTC problem, the nonlinear two-point boundary value (TPBV) problem derived from the necessary conditions of the OOTC problem is transformed into two decoupled iterative sequences of linear differential equations. The OOTC law obtained consists of accurate feedforward and feedback terms and a nonlinear compensation term. The former can be found by solving a Sylvester equation and a Riccati equation, and the latter can be approximated using a successive approximation approach (SAA). A reduced-order reference input observer is constructed to make the feedforward control law physically realizable. A simulation example is employed to illustrate the validity of the results.  相似文献   

7.
In this paper, the task of achieving the soft landing of a lunar module such that the fuel consumption and the flight time are minimized is formulated as an optimal control problem. The motion of the lunar module is described in a three dimensional coordinate system. We obtain the form of the optimal closed loop control law, where a feedback gain matrix is involved. It is then shown that this feedback gain matrix satisfies a Riccati-like matrix differential equation. The optimal control problem is first solved as an open loop optimal control problem by using a time scaling transform and the control parameterization method. Then, by virtue of the relationship between the optimal open loop control and the optimal closed loop control along the optimal trajectory, we present a practical method to calculate an approximate optimal feedback gain matrix, without having to solve an optimal control problem involving the complex Riccati-like matrix differential equation coupled with the original system dynamics. Simulation results show that the proposed approach is highly effective.  相似文献   

8.
In this article, we continue our study of a system described by a class of initial boundary value problem (IBVP) of the Korteweg-de Vries (KdV) equation and the KdV Burgers (KdVB) equation posed on a finite interval with nonhomogeneous boundary conditions. While the system is known to be locally well-posed (Kramer et al. , [2010]; Rivas et al. in Math. Control Relat. Fields 1:61–81, [2011]) and its small amplitude solutions are known to exist globally, it is not clear whether its large amplitude solutions would blow up in finite time or not. This problem is addressed in this article from control theory point of view: look for some appropriate feedback control laws (with boundary value functions as control inputs) to ensure that the finite time blow-up phenomena would never occur. In this article, a simple, but nonlinear, feedback control law is proposed and the resulting closed-loop system is shown not only to be globally well-posed, but also to be locally exponentially stable for the KdV equation and globally exponentially stable for the KdVB equation.  相似文献   

9.
In this paper, we use the variational iteration method (VIM) for optimal control problems. First, optimal control problems are transferred to Hamilton–Jacobi–Bellman (HJB) equation as a nonlinear first order hyperbolic partial differential equation. Then, the basic VIM is applied to construct a nonlinear optimal feedback control law. By this method, the control and state variables can be approximated as a function of time. Also, the numerical value of the performance index is obtained readily. In view of the convergence of the method, some illustrative examples are presented to show the efficiency and reliability of the presented method.  相似文献   

10.
In the paper we are concerned with the feedback control system governed by nonlinear evolutionary equations involving weakly continuous operators. By using the Rothe method and a surjectivity result for weakly continuous operators, we first present the solvability for the evolutionary equation. Then we show the existence of solutions to the feedback control system. We also consider an existence result for an optimal control problem. Moreover, we apply the main results to a class of differential variational inequalities, evolutionary hemivariational inequalities and the non-stationary Navier–Stokes–Voigt equation with a subgradient inclusion condition.  相似文献   

11.
In this paper we analyze a locking-free numerical scheme for the LQR control of a Timoshenko beam. We consider a non-conforming finite element discretization of the system dynamics and a control law constant in the spatial dimension. To solve the LQR problem we seek a feedback control which depends on the solution of an algebraic Riccati equation. An optimal error estimate for the feedback operator is proved in the framework of the approximation theory for control of infinite dimensional systems. This estimate is valid with constants that do not depend on the thickness of the beam, which leads to the conclusion that the method is locking-free. In order to assess the performance of the method, numerical tests are reported and discussed.  相似文献   

12.
The solutions of most nonlinear optimal control problems are given in the form of open-loop optimal control which is computed from a given fixed initial condition. Optimal feedback control can in principle be obtained by solving the corresponding Hamilton-Jacobi-Bellman dynamic programming equation, though in general this is a difficult task. We propose a practical and effective alternative for constructing an approximate optimal feedback controller in the form of a feedforward neural network, and we justify this choice by several reasons. The controller is capable of approximately minimizing an arbitrary performance index for a nonlinear dynamical system for initial conditions arising from a nontrivial bounded subset of the state space. A direct training algorithm is proposed and several illustrative examples are given.This research was carried out with the support of a grant from the Australian Research Council.We thank the anonymous reviewers for their helpful comments.  相似文献   

13.
In this paper, we consider the boundary stabilization of a flexible beam attached to the center of a rigid disk. The disk rotates with a non-uniform angular velocity while the beam has non-homogeneous spatial coefficients. To stabilize the system, we propose a feedback law which consists of a control torque applied on the disk and either a dynamic boundary control moment or a dynamic boundary control force or both of them applied at the free end of the beam. By the frequency multiplier method, we show that no matter how non-homogeneous the beam is, and no matter how the angular velocity is varying but not exceeding a certain bound, the nonlinear closed loop system is always exponential stable. Furthermore, by the spectral analysis method, it is shown that the closed loop system with uniform angular velocity has a sequence of generalized eigenfunctions, which form a Riesz basis for the state space, and hence the spectrum-determined growth condition as well as the optimal decay rate are obtained.  相似文献   

14.
In this paper, a discrete integral sliding mode (ISM) controller based on composite nonlinear feedback (CNF) method is proposed. The aim of the controller is to improve the transient performance of uncertain systems. The CNF based discrete ISM controller consists of a linear and a nonlinear term. The linear control law is used to decrease the damping ratio of the closed-loop system for yielding a quick transient response. The nonlinear feedback control law is used to increase the damping ratio with an aim to reduce the overshoot of the closed-loop system as it approaches the desired reference position. It is observed that the discrete CNF-ISM controller produces superior transient performance as compared to the discrete ISM controller. The closed-loop control system remains stable during the sliding condition. Simulation results demonstrate the effectiveness of the proposed controller.  相似文献   

15.
We consider the problem of finding the optimal, robust stabilization of linear systems within a family of nonlinear feedback laws. Investigation of the efficiency of full-state based and partial-state based so-called NPID feedback schemes proposed for the stabilization of systems in robotic applications has provided the motivation for our work. We prove that, for a given quadratic Lyapunov function and a given family of nonlinear feedback laws, there exist optimal piecewise linear feedbacks that make the generalized Lyapunov derivative of the closed-loop system minimal. The result provides improved stabilization over the nonlinear stabilizing feedback law proposed in Ref. 1 as demonstrated in simulations of the Sarcos Dextrous Manipulator.  相似文献   

16.
This paper is concerned with the controllability and stabilizability problem for control systems described by a time‐varying linear abstract differential equation with distributed delay in the state variables. An approximate controllability property is established, and for periodic systems, the stabilization problem is studied. Assuming that the semigroup of operators associated with the uncontrolled and non delayed equation is compact, and using the characterization of the asymptotic stability in terms of the spectrum of the monodromy operator of the uncontrolled system, it is shown that the approximate controllability property is a sufficient condition for the existence of a periodic feedback control law that stabilizes the system. The result is extended to include some systems which are asymptotically periodic. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we develop an optimality-based framework for addressing the problem of nonlinear–nonquadratic hybrid control for disturbance rejection of nonlinear impulsive dynamical systems with bounded exogenous disturbances. Specifically, we transform a given nonlinear–nonquadratic hybrid performance criterion to account for system disturbances. As a consequence, the disturbance rejection problem is translated into an optimal hybrid control problem. Furthermore, the resulting optimal hybrid control law is shown to render the closed-loop nonlinear input–output map dissipative with respect to general supply rates. In addition, the Lyapunov function guaranteeing closed-loop stability is shown to be a solution to a steady-state hybrid Hamilton–Jacobi–Isaacs equation and thus guaranteeing optimality.  相似文献   

18.
This article presents an efficient parallel processing approach for solving the optimal control problem of nonlinear composite systems. In this approach, the original high-order coupled nonlinear two-point boundary value problem (TPBVP) derived from the Pontryagin's maximum principle is first transformed into a sequence of lower-order decoupled linear time-invariant TPBVPs. Then, an optimal control law which consists of both feedback and forward terms is achieved by using the modal series method for the derived sequence. The feedback term specified by local states of each subsystem is determined by solving a matrix Riccati differential equation. The forward term for each subsystem derived from its local information is an infinite sum of adjoint vectors. The convergence analysis and parallel processing capability of the proposed approach are also provided. To achieve an accurate feedforward-feedback suboptimal control, we apply a fast iterative algorithm with low computational effort. Finally, some comparative results are included to illustrate the effectiveness of the proposed approach.  相似文献   

19.
Concepts of programmability and compact programmability are defined relative to a class of modified Poisson series. Lie-series-based canonical perturbation methods from astrodynamics are applied to the Hamiltonian system boundary-value problem, and more usual methods are applied to the perturbed Hamilton-Jacobi-Bellman partial differential equation, in order to obtain a complete set of equations for the perturbed optimal feedback control law for both infinite-time and finite-time regulator problems. The relative advantages of each approach are evaluated. A major aim of the paper is to determine the largest class of perturbations, within the set of Poisson series, for which the equations can be derived on a computer by symbolic manipulation. The more general the class, the more accurate the perturbation solution can be, for a given order. The solutions developed are complete; all that remains is to program them in order to have computerized derivations of the optimal nonlinear feedback control laws.This research was supported by NSF Grant No. ENG-78-10232. This paper was presented at the 1982 Conference on Information Sciences and Systems, Princeton, New Jersey, and appears in the Proceedings.  相似文献   

20.
Given an unstable hybrid stochastic functional differential equation, how to design a delay feedback controller to make it stable? Some results have been obtained for hybrid systems with finite delay. However, the state of many stochastic differential equations are related to the whole history of the system, so it is necessary to discuss the feedback control of stochastic functional differential equations with infinite delay. On the other hand, in many practical stochastic models, the coefficients of these systems do not satisfy the linear growth condition, but are highly nonlinear. In this paper, the delay feedback controls are designed for a class of infinite delay stochastic systems with highly nonlinear and the influence of switching state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号