首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents an optimal sliding mode output tracking control scheme for a class of fractional-order uncertain systems. Firstly, an augmented fractional-order system, composed of the original system and the external system, is constructed to transform the optimal output tracking issue into the design problem of linear quadratic regulator. The optimal tracking control problem for the nominal augmented fractional-order system is then studied. Secondly, the fractional-integral sliding mode controller is introduced to robustify the augmented fractional-order system, which satisfy the matching conditions. As a result, the original system output can track the external system output trajectory effectively even the uncertainties exist. Finally, the developed design techniques are applied to the tracking control of fractional-order permanent magnet synchronous motor. The simulation results demonstrate the validity of this approach.  相似文献   

2.
This paper proposes a robust output feedback controller for a class of uncertain discrete-time, multi-input multi-output, linear, systems. This method, which is based on the combination of discrete-time sliding mode control (DTSMC) and Kalman estimator, ensures the stability, robustness and an output tracking against the modeling uncertainties at large sampling periods. For this purpose, an appropriate structure is considered for sliding surface and the Lyapunov theory for the mismatched uncertain system is then used to design its parameter. This problem leads to solve a set of linear matrix inequalities. A new method is then proposed to reach the quasi-sliding mode and stay thereafter. Simulation studies show the effectiveness of the proposed method in the presence of parameter uncertainties and external disturbances at large sampling periods.  相似文献   

3.
4.
In this paper, we study exponential stability and tracking control problems for uncertain time-delayed systems. First, sufficient conditions of exponential stability for a class of uncertain time-delayed systems are established by employing Lyapunov functional methods and algebraic matrix inequality techniques. Furthermore, tracking control problems are investigated in which an uncertain linear time-delayed system is used to track the reference system. Sufficient conditions for solvability of tracking control problems are obtained for the cases that the system state is measurable and non-measurable, respectively. When the state is measurable, we design an impulsive control law to achieve the tracking performance. When the state information is not directly available from measurement, an impulsive control law based on the measured output will be used. Finally, numerical examples are presented to illustrate the effectiveness and usefulness of our results.  相似文献   

5.
We consider the problem of stabilizing an uncertain system when the norm of the control input is bounded by a prespecified constant. We treat continuous-time dynamical systems whose nominal part is linear and whose uncertain part is norm-bounded by a known affine function of the norm of the system state and the norm of the control input. Given a prespecified rate of convergence and a ball containing the origin of the state space, we present controllers which guarantee that, for all allowable uncertainties and nonlinearities, there is a region of attraction from which all solutions converge to the given ball with the prespecified convergence rate.This research was supported by the National Science Foundation under Grant MSS-90-57079.  相似文献   

6.
This article deals with the problem of nonfragile H output tracking control for a kind of singular Markovian jump systems with time‐varying delays, parameter uncertainties, network‐induced signal transmission delays, and data packet dropouts. The main objective is to design mode‐dependent state‐feedback controller under controller gain perturbations and bounded modes transition rates such that the output of the closed‐loop networked control system tracks the output of a given reference system with the required H output tracking performance. By constructing a more multiple stochastic Lyapunov–Krasovskii functional, the novel mode‐dependent and delay‐dependent conditions are obtained to guarantee the augmented output tracking closed‐loop system is not only stochastically admissible but also satisfies a prescribed H‐norm level for all signal transmission delays, data packet dropouts, and admissible uncertainties. Then, the desired state‐feedback controller parameters are determined by solving a set of strict linear matrix inequalities. A simple production system example and two numerical examples are used to verify the effectiveness and usefulness of the proposed methods. © 2015 Wiley Periodicals, Inc. Complexity 21: 396–411, 2016  相似文献   

7.
In this paper, a class of nonlinear large-scale interconnected systems with mismatched uncertainties is considered. Based on sliding mode control ideas, a kind of decentralized robust control scheme using only output information is presented to stabilize the system. The approach allows more general uncertain interconnections than all of the associated existing work and better robustness is achieved. Compared with existing decentralized output feedback schemes, it is unnecessary to solve Lyapunov equations and the so-called strict structural condition is avoided. Also, it is not necessary that the nominal subsystem is output feedback stabilizable. Finally, a simulation example is presented to illustrate the effectiveness of the results.  相似文献   

8.
In this article, an adaptive fuzzy output tracking control approach is proposed for a class of multiple‐input and multiple‐output uncertain switched nonlinear systems with unknown control directions and under arbitrary switchings. In the control design, fuzzy logic systems are used to identify the unknown switched nonlinear systems. A Nussbaum gain function is introduced into the control design and the unknown control direction problem is solved. Under the framework of the backstepping control design, fuzzy adaptive control and common Lyapunov function stability theory, a new adaptive fuzzy output tracking control method is developed. It is proved that the proposed control approach can guarantee that all the signals in the closed‐loop system are bounded and the tracking error remains an adjustable neighborhood of the origin. A numerical example is provided to illustrate the effectiveness of the proposed approach. © 2015 Wiley Periodicals, Inc. Complexity 21: 155–166, 2016  相似文献   

9.
对具有未建模动态并且输入通道存在干扰的动态不确定多输入多输出(MIMO)模型参考自适应控制(MRAC)系统,应用输出反馈给出了一种变结构模型跟踪控制器设计.系统的已建模部分有大于1的任意相对阶且已建模部分阶的上界是未知的.通过引入辅助信号和带有记忆功能的正规化信号,以及适当选择控制器参数,保证了闭环系统的全局稳定性,且跟踪误差可调整到任意小.  相似文献   

10.
不确定非线性系统的鲁棒自适应控制器   总被引:2,自引:1,他引:1       下载免费PDF全文
在backstepping程序中,把非线性自适应控制和鲁棒控制连接起来,为参数化的严格反馈系统在不确定性存在的情况下,建立了一种鲁棒自适应控制方案.非线性自适应控制被用来处理系统的线性参数化部分,而鲁棒控制通过引进非线性阻尼项被用来处理不确定性部分.与现有的方案不同,作者给出了非线性阻尼项的无限种选择,而不是仅仅一种选择.通过使用一种合适的选择,能够设计一个鲁棒自适应控制器.它不仅能够保证对不确定性的鲁棒性,而且能够使输出误差任意小,以及用较小的控制努力取得较好的性能.  相似文献   

11.
In this paper, a new and systematic method for designing robust digital controllers for uncertain nonlinear systems with structured uncertainties is presented. In the proposed method, a controller is designed in terms of the optimal linear model representation of the nominal system around each operating point of the trajectory, while the uncertainties are decomposed such that the uncertain nonlinear system can be rewritten as a set of local linear models with disturbed inputs. Applying conventional robust control techniques, continuous-time robust controllers are first designed to eliminate the effects of the uncertainties on the underlying system. Then, a robust digital controller is obtained as the result of a digital redesign of the designed continuous-time robust controller using the state-matching technique. The effectiveness of the proposed controller design method is illustrated through some numerical examples on complex nonlinear systems––chaotic systems.  相似文献   

12.
研究一类线性不确定系统的鲁棒D型迭代学习控制问题.首先针对一类线性标称控制对象,建立其迭代学习控制的二维模型;然后基于获得的二维模型,利用二维系统稳定性理论,获得系统在迭代初态与期望初态一致和不一致两种情形下的D型迭代学习控制律的存在条件和设计方法;进一步,将所得结果推广至控制对象包含不确定性的情形.所得结果以线性矩阵不等式(LMI)的形式给出,可以方便地利用Matlab中的LMI工具箱求解.最后,数值仿真实例验证了本文所提方法的有效性.  相似文献   

13.
This work proposes the command tracking problem for uncertain Euler–Lagrange (EL) systems with multiple partial loss of effectiveness (PLOE) actuator faults. Compared to existing fault-tolerant controllers for EL systems, the proposed adaptive controller accounts for parametric uncertainties in the system and multiple time-varying actuator fault parameters. The proposed method can also handle an infinite number of fault cases. The closed-loop fault-tolerant system is treated as a switched dynamical system, and a switched system stability is established using multiple Lyapunov functions. It is shown that all signals are bounded in each sub-interval and at the switching instances, and asymptotic tracking can be obtained only for a finite number of fault occurrences, whereas tracking error is bounded for the infinite case. Finally, a simulation example on a robotic manipulator is presented to show the effectiveness of the proposed method.  相似文献   

14.
This paper considers the problem of robust stabilization via dynamic output feedbackcontrollers for uncertain two-dimensional continuous systems described by the Roesser's state space model. The parameter uncertainties are assumed to be norm-bounded appearing in all the matrices of the system model. A sufficient condition for the existence of dynamic output feedback controllers guaranteeing the asymptotic stability of the closed-loop system for all admissible uncertainties is proposed. A desired dynamic output feedback controller can be constructed by solving a set of linear matrix inequalities. Finally, an illustrative example is provided to demonstrate the applicability and effectiveness of the proposed method.  相似文献   

15.
This paper is devoted to investigating the problem of robust sliding mode control for a class of uncertain Markovian jump linear time-delay systems with generally uncertain transition rates (GUTRs). In this GUTR model, each transition rate can be completely unknown or only its estimate value is known. By making use of linear matrix inequalities technique, sufficient conditions are presented to derive the linear switching surface and guarantee the stochastic stability of sliding mode dynamics. A sliding mode control law is developed to drive the state trajectory of the closed-loop system to the specified linear switching surface in a finite-time interval in spite of the existing uncertainties, time delays and unknown transition rates. Finally, an example is presented to verify the validity of the proposed method.  相似文献   

16.
This article proposes a novel adaptive sliding mode control (SMC) scheme to realize the problem of robust tracking and model following for a class of uncertain time‐delay systems with input nonlinearity. It is shown that the proposed robust tracking controller guarantees the stability of overall closed‐loop system and achieves zero‐tracking error in the presence of input nonlinearity, time‐delays, time‐varying parameter uncertainties and external disturbances. The selection of sliding surface and the existence of sliding mode are two important issues, which have been addressed. This scheme assures robustness against input nonlinearity, time‐delays, parameter uncertainties, and external disturbances. Moreover, the knowledge of the upper bound of uncertainties is not required and chattering phenomenon is eliminated. Both theoretical analysis and illustrative examples demonstrate the validity of the proposed scheme. © 2014 Wiley Periodicals, Inc. Complexity 21: 66–73, 2015  相似文献   

17.
电液位置伺服系统的鲁棒自适应控制   总被引:2,自引:2,他引:0       下载免费PDF全文
针对由于参数不确定性、非线性等因素导致的电液位置伺服系统跟踪控制问题,基于Lyapunov(李雅普诺夫)稳定性理论,提出了一种具有参数自适应能力的鲁棒自适应反步方法.通过设计的自适应律来抑制由于参数不确定性对系统跟踪控制性能的影响,设计的鲁棒控制律使得系统具有全局一致渐近稳定性能.此外,还对伺服阀换向引起的不连续性进行了近似处理.以伺服阀控对称缸系统为控制对象,仿真结果表明,和传统的PD控制方法相比,在参数不确定性的情况下,该控制方法使得电液伺服系统的位置跟踪误差波动较小,且能以较快速度渐近收敛到0,同时所需要的伺服阀输入电压信号值也更小,相关不确定参数在经过较短时间后均可以收敛到其稳定值,从而验证了所提出算法的有效性.  相似文献   

18.
This paper deals with the class of uncertain continuous-time linear systems with Markovian jumps, time delay, and saturating actuators. Under norm-bounded uncertainties and based on the Lyapunov method, sufficient conditions on stochastic stability and stochastic stabilizability are developed. A design algorithm for a stabilizing observer-based robust output feedback controller is proposed in terms of the solutions of linear matrix inequalities.  相似文献   

19.
This paper deals with the problem of non-fragile robust stabilization and H control for a class of uncertain stochastic nonlinear time-delay systems. The parametric uncertainties are real time-varying as well as norm bounded. The time-delay factors are unknown and time-varying with known bounds. The aim is to design a memoryless non-fragile state feedback control law such that the closed-loop system is stochastically asymptotically stable in the mean square and the effect of the disturbance input on the controlled output is less than a prescribed level for all admissible parameter uncertainties. New sufficient conditions for the existence of such controllers are presented based on the linear matrix inequalities (LMIs) approach. Numerical example is given to illustrate the effectiveness of the developed techniques.  相似文献   

20.
This paper is concerned with finite- and fixed-time robust stabilization of uncertain multi-input nonlinear systems via the implicit Lyapunov function method. Instead of splitting the system into a linear nominal model and an additive perturbation which gathers nonlinearities, parametric uncertainties, and exogenous disturbances, the methodology hereby proposed preserves some nonlinear terms in the nominal system via an exact polytopic representation which leads to design conditions in the form of linear matrix inequalities. As a result, feasible solutions are found where former approaches fail; these solutions have more accurate settling-time estimates with reduced control effort. The corresponding control law includes well-known high-order sliding modes as a particular case. Numerical simulations are provided to illustrate the advantages of the proposal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号