首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we use measure theory to solve a wide range of the nonlinear programming problems. First, we transform a nonlinear programming problem to a classical optimal control problem with no restriction on states and controls. The new problem is modified into one consisting of the minimization of a special linear functional over a set of Radon measures; then we obtain an optimal measure corresponding to functional problem which is then approximated by a finite combination of atomic measures and the problem converted approximately to a finite-dimensional linear programming. Then by the solution of the linear programming problem we obtain the approximate optimal control and then, by the solution of the latter problem we obtain an approximate solution for the original problem. Furthermore, we obtain the path from the initial point to the admissible solution.  相似文献   

2.
In this paper we shall study moving boundary problems, and we introduce an approach for solving a wide range of them by using calculus of variations and optimization. First, we transform the problem equivalently into an optimal control problem by defining an objective function and artificial control functions. By using measure theory, the new problem is modified into one consisting of the minimization of a linear functional over a set of Radon measures; then we obtain an optimal measure which is then approximated by a finite combination of atomic measures and the problem converted to an infinite-dimensional linear programming. We approximate the infinite linear programming to a finite-dimensional linear programming. Then by using the solution of the latter problem we obtain an approximate solution for moving boundary function on specific time. Furthermore, we show the path of moving boundary from initial state to final state.  相似文献   

3.
In this paper we consider an optimal control system described byn-dimensional heat equation with a thermal source. Thus problem is to find an optimal control which puts the system in a finite time T, into a stationary regime and to minimize a general objective function. Here we assume there is no constraints on control. This problem is reduced to a moment problem.We modify the moment problem into one consisting of the minimization of a positive linear functional over a set of Radon measures and we show that there is an optimal measure corresponding to the optimal control. The above optimal measure approximated by a finite combination of atomic measures. This construction gives rise to a finite dimensional linear programming problem, where its solution can be used to determine the optimal combination of atomic measures. Then by using the solution of the above linear programming problem we find a piecewise-constant optimal control function which is an approximate control for the original optimal control problem. Finally we obtain piecewise-constant optimal control for two examples of heat equations with a thermal source in one-dimensional.  相似文献   

4.
In this paper, we use measure theory for considering asymptotically stable of an autonomous system [1] of first order nonlinear ordinary differential equations(ODE’s). First, we define a nonlinear infinite-horizon optimal control problem related to the ODE. Then, by a suitable change of variable, we transform the problem to a finite-horizon nonlinear optimal control problem. Then, the problem is modified into one consisting of the minimization of a linear functional over a set of positive Radon measures. The optimal measure is approximated by a finite combination of atomic measures and the problem converted to a finite-dimensional linear programming problem. The solution to this linear programming problem is used to find a piecewise-constant control, and by using the approximated control signals, we obtain the approximate trajectories and the error functional related to it. Finally the approximated trajectories and error functional is used to for considering asymptotically stable of the original problem.  相似文献   

5.
In this paper, the optimal control problem is governed by weak coupled parabolic PDEs and involves pointwise state and control constraints. We use measure theory method for solving this problem. In order to use the weak solution of problem, first problem has been transformed into measure form. This problem is reduced to a linear programming problem. Then we obtain an optimal measure which is approximated by a finite combination of atomic measures. We find piecewise-constant optimal control functions which are an approximate control for the original optimal control problem.  相似文献   

6.
In this paper we use measure theory to solve a wide range of second-order boundary value ordinary differential equations. First, we transform the problem to a first order system of ordinary differential equations (ODE’s) and then define an optimization problem related to it. The new problem is modified into one consisting of the minimization of a linear functional over a set of Radon measures; the optimal measure is then approximated by a finite combination of atomic measures and the problem converted approximatly to a finite-dimensional linear programming problem. The solution to this problem is used to construct the approximate solution of the original problem. Finally we get the error functionalE (we define in this paper) for the approximate solution of the ODE’s problems.  相似文献   

7.
A shape optimization problem concerned with thermal deformation of elastic bodies is considered. In this article, measure theory approach in function space is derived, resulting in an effective algorithm for the discretized optimization problem. First the problem is expressed as an optimal control problem governed by variational forms on a fixed domain. Then by using an embedding method, the class of admissible shapes is replaced by a class of positive Borel measures. The optimization problem in measure space is then approximated by a linear programming problem. The optimal measure representing optimal shape is approximated by the solution of this finite-dimensional linear programming problem. Numerical examples are also given.  相似文献   

8.
We provide two approaches to the numerical analysis of stochastic control problems. The analyses rely on linear programming formulations of the control problem and allow numerical comparison between controls and numerical verification of optimality. The formulations characterize the processes through the moments of the induced occupation measures. We deal directly with the processes rather than with some approximation to the processes. Excellent software is readily available, since the computations involve finite-dimensional linear programs.  相似文献   

9.
This paper is devoted to a new numerical technique for the approximation of the flow problem of incompressible liquid through an inhomogeneous porous medium (say dam). First the problem is expressed as an optimal control problem governed by variational forms on a fixed domain. Then by using an embedding method, the class of admissible shapes is replaced by a class of positive Radon measures. The optimization problem in measure space is then approximated by a linear programming problem. The optimal measure representing optimal shape is approximated by the solution of this linear programming problem. Numerical example is also given.  相似文献   

10.
This paper describes a numerical scheme for optimal control of a time-dependent linear system to a moving final state. Discretization of the corresponding differential equations gives rise to a linear algebraic system. Defining some binary variables, we approximate the original problem by a mixed integer linear programming (MILP) problem. Numerical examples show that the resulting method is highly efficient.  相似文献   

11.
It is a well-known fact that a measurable set a shape can beconsidered as a measure; the aim of this work is to solve anoptimal-shape problem in such a way that it also answers thequestion of whether measures can be considered as shapes. Thispaper introduces a new method for solving problems of optimalshape design; by a process of embedding, the problem is replacedby another in which we seek to minimize a linear form over asubset of the product of two measure spaces defined by linearequalities. This minimization is global, and the theory allowsus to develop a computational method which enables us to findthe solution by finite-dimensional linear programming. The nearlyoptimal pair (C, dC) is obtained via the optimal pair of measuresby an approximation procedure. It is sometimes necessary toapply a standard minimization algorithm, because of some limitationsin the accuracy. Some examples are presented.  相似文献   

12.
In this paper we solve a collection of optimal path planning problems using a method based on measure theory. First we consider the problem as an optimization problem and then we convert it to an optimal control problem by defining some artificial control functions. Then we perform a metamorphosis in the space of problem. In fact we define an injection between the set of admissible pairs, containing the control vector function and a collision-free path defined on free space and the space of positive Radon measures. By properties of this kind of measures we obtain a linear programming problem that its solution gives rise to constructing approximate optimal trajectory of the original problem. Some numerical examples are proposed.  相似文献   

13.
A two dimensional model of the orientation distribution of fibres in a paper machine headbox is studied. The goal is to control the fibre orientation distribution at the outlet of contraction by changing its shape. The mathematical formulation leads to an optimization problem with control in coefficients of a linear convection-diffusion equation as the state problem. Then, the problem is expressed as an optimal control problem governed by variational forms. By using an embedding method, the class of admissible shapes is replaced by a class of positive Radon measures. The optimization problem in measure space is then approximated by a linear programming problem. The optimal measure representing optimal shape is approximated by the solution of this linear programming problem. In this paper, we have shown that the embedding method (embedding the admissible set into a subset of measures), successfully can be applied to shape variation design to a one dimensional headbox. The usefulness of this idea is that the method is not iterative and it does not need any initial guess of the solution.   相似文献   

14.
A theorem of Hardy, Littlewood, and Polya, first time is used to find the variational form of the well known shortest path problem, and as a consequence of that theorem, one can find the shortest path problem via quadratic programming. In this paper, we use measure theory to solve this problem. The shortest path problem can be written as an optimal control problem. Then the resulting distributed control problem is expressed in measure theoretical form, in fact an infinite dimensional linear programming problem. The optimal measure representing the shortest path problem is approximated by the solution of a finite dimensional linear programming problem.  相似文献   

15.
In this paper, we propose a constructive method for solving a linear minimax problem of optimal control. Following the Gabasov-Kirillova approach, we introduce the concept of so-called support control. After establishing an optimality criterion for the support control, we describe a scheme for reducing the initial infinite-dimensional problem to a finite-dimensional one, which can be solved numerically by the methods of linear programming. At the end, we give an illustrative example.  相似文献   

16.
Optimal control problems in Hilbert spaces are considered in a measure-theoretical framework. Instead of minimizing a functional defined on a class of admissible trajectory-control pairs, we minimize one defined on a set of measures; this set is defined by the boundary conditions and the differential equation of the problem. The new problem is an infinite-dimensionallinear programming problem; it is shown that it is possible to approximate its solution by that of a finite-dimensional linear program of sufficiently high dimensions, while this solution itself can be approximated by a trajectory-control pair. This pair may not be strictly admissible; if the dimensionality of the finite-dimensional linear program and the accuracy of the computations are high enough, the conditions of admissibility can be said to be satisfied up to any given accuracy. The value given by this pair to the functional measuring the performance criterion can be about equal to theglobal infimum associated with the classical problem, or it may be less than this number. It appears that this method may become a useful technique for the computation of optimal controls, provided the approximations involved are acceptable.  相似文献   

17.
The present paper is concerned with an optimal control problem for then-dimensional diffusion equation with a sequence of Radon measures as generalized control variables. Suppose that a desired final state is not reachable. We enlarge the set of admissible controls and provide a solution to the corresponding moment problem for the diffusion equation, so that the previously chosen desired final state is actually reachable by the action of a generalized control. Then, we minimize an objective function in this extended space, which can be characterized as consisting of infinite sequences of Radon measures which satisfy some constraints. Then, we approximate the action of the optimal sequence by that of a control, and finally develop numerical methods to estimate these nearly optimal controls. Several numerical examples are presented to illustrate these ideas.  相似文献   

18.
We study a stochastic optimal control problem for a partially observed diffusion. By using the control randomization method in Bandini et al. (2018), we prove a corresponding randomized dynamic programming principle (DPP) for the value function, which is obtained from a flow property of an associated filter process. This DPP is the key step towards our main result: a characterization of the value function of the partial observation control problem as the unique viscosity solution to the corresponding dynamic programming Hamilton–Jacobi–Bellman (HJB) equation. The latter is formulated as a new, fully non linear partial differential equation on the Wasserstein space of probability measures. An important feature of our approach is that it does not require any non-degeneracy condition on the diffusion coefficient, and no condition is imposed to guarantee existence of a density for the filter process solution to the controlled Zakai equation. Finally, we give an explicit solution to our HJB equation in the case of a partially observed non Gaussian linear–quadratic model.  相似文献   

19.
基于非均匀参数化的自由终端时间最优控制问题求解   总被引:1,自引:0,他引:1  
针对自由终端时间最优控制问题,提出了一种基于非均匀控制向量参数化的数值解法.将控制时域离散化为不同长度的时间段,各时间段长度作为新的控制变量.通过引入标准化的时间变量,原问题转化为均匀参数化的固定终端时间最优控制问题.建立目标和约束函数的Hamilton函数,通过求解伴随方程获得目标和约束函数的梯度,采用序列二次规划(SQP)获得数值解.针对两个经典的化工过程自由终端时间最优控制问题进行仿真研究,验证了所提出算法的可行性和有效性.  相似文献   

20.
The classical finite-dimensional linear-quadratic optimal control problem is revisited. A new linear-quadratic control problem with linear state penalty terms but without quadratic state penalty terms, is introduced. An optimal control exists and the closed-form optimal solution is given. It is remarkable that feedback action plays no role and state information does not feature in the optimal control. The optimal cost function, rather than being quadratic, is linear in the initial state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号