首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider the problem faced by managers of critical civil interdependent infrastructure systems of restoring essential public services after a non-routine event causes disruptions to these services. In order to restore the services, we must determine the set of components (or tasks) that will be temporarily installed or repaired, assign these tasks to work groups, and then determine the schedule of each work group to complete the tasks assigned to it. These restoration planning and scheduling decisions are often undertaken in an independent, sequential manner. We provide mathematical models and optimization algorithms that integrate the restoration and planning decisions and specifically account for the interdependencies between the infrastructure systems. The objective function of this problem provides a measure of how well the services are being restored over the horizon of the restoration plan, rather than just focusing on the performance of the systems after all restoration efforts are complete. We test our methods on realistic data representing infrastructure systems in New York City. Our computational results demonstrate that we can provide integrated restoration and scheduling plans of high quality with limited computational resources. We also discuss the benefits of integrating the restoration and scheduling decisions.  相似文献   

2.
突发事件发生后,基础设施之间的恢复依赖为恢复过程带来了严重挑战。为了能够在突发事件后高效而有序的实现基础设施恢复运行,根据相互之间的恢复依赖关系制定合理的恢复决策非常关键。本文基于网络流理论,以累积恢复效能最大化为目标,建立了时间敏感选项依赖下的恢复设计与调度决策混合整数规划模型。然后,讨论了模型在完全中心化、完全分散和信息共享决策环境下的应用方法。最后,通过真实基础设施数据集测试了模型,结果表明:(1)该模型在突发事件后的基础设施恢复决策中具有应用可行性;(2)决策环境显著影响存在恢复依赖的基础设施网络整体累积恢复效能;(3)与完全分散决策环境相比,在信息共享决策环境下独立决策的整体累积恢复效能可以得到大幅提升。  相似文献   

3.
This article presents six parallel multiobjective evolutionary algorithms applied to solve the scheduling problem in distributed heterogeneous computing and grid systems. The studied evolutionary algorithms follow an explicit multiobjective approach to tackle the simultaneous optimization of a system-related (i.e. makespan) and a user-related (i.e. flowtime) objectives. Parallel models of the proposed methods are developed in order to efficiently solve the problem. The experimental analysis demonstrates that the proposed evolutionary algorithms are able to efficiently compute accurate results when solving standard and new large problem instances. The best of the proposed methods outperforms both deterministic scheduling heuristics and single-objective evolutionary methods previously applied to the problem.  相似文献   

4.
The advent of Sonet and DWDM mesh-restorable networks which contain explicit reservations of spare capacity for restoration presents a new problem in topological network design. On the one hand, the routing of working flows wants a sparse tree-like graph for minimization of the classic fixed charge plus routing (FCR) costs. On the other hand, restorability requires a closed (bi-connected) and preferably high-degree topology for efficient sharing of spare capacity allocations (SCA) for restoration over non-simultaneous failure scenarios. These diametrically opposed considerations underlie the determination of an optimum physical facilities graph for a broadband network provider. Standalone instances of each constituent problem are NP-hard. The full problem of simultaneously optimizing mesh-restorable topology, routing, and sparing is therefore very difficult computationally. Following a comprehensive survey of prior work on topological design problems, we provide a {1–0} MIP formulation for the complete mesh-restorable design problem and also propose a novel three-stage heuristic. The heuristic is based on the hypothesis that the union set of edges obtained from separate FCR and SCA sub-problems constitutes an effective topology space within which to solve a restricted instance of the full problem. Where fully optimal reference solutions are obtainable the heuristic shows less than 8% gaps but runs in minutes as opposed to days. In other test cases the reference problem cannot be solved to optimality and we can only report that heuristic results obtained in minutes are not improved upon by CPLEX running the full problem for 6 to 18 hours. The computational behavior we observe gives insight for further work based on an appreciation of the problem as embodying unexpectedly difficult feasibility apects, as well as optimality aspects.  相似文献   

5.
Transportation infrastructure, such as pavements and bridges, is critical to a nation’s economy. However, a large number of transportation infrastructure is underperforming and structurally deficient and must be repaired or reconstructed. Maintenance of deteriorating transportation infrastructure often requires multiple types/levels of actions with complex effects. Maintenance management becomes more intriguing when considering facilities at the network level, which represents more challenges on modeling interdependencies among various facilities. This research considers an integrated budget allocation and preventive maintenance optimization problem for multi-facility deteriorating transportation infrastructure systems. We first develop a general integer programming formulation for this problem. In order to solve large-scale problems, we reformulate the problem and decompose it into multiple Markov decision process models. A priority-based two-stage method is developed to find optimal maintenance decisions. Computational studies are conducted to evaluate the performance of the proposed algorithms. Our results show that the proposed algorithms are efficient and effective in finding satisfactory maintenance decisions for multi-facility systems. We also investigate the properties of the optimal maintenance decisions and make several important observations, which provide helpful decision guidance for real-world problems.  相似文献   

6.
We consider the problem of optimally scheduling the restoration of edges of a transportation network destroyed/damaged by a disaster. The restoration is performed by service units (servers) which have fixed restoration speeds. If several servers work simultaneously at the same point of the network, their collective restoration speed is the sum of their individual restoration speeds. The servers are initially located at some nodes. Each server can travel within the already restored part of the network with infinite speed, that is, at any time can immediately relocate to another point of the same connected component of the already restored part of the network. It is required to minimize a scheduling objective that can be expressed as the maximum or the sum of nondecreasing functions of the recovery times of the nodes, where the recovery time of a node is the time when the node is reached for the first time by a server. We present polynomial-time algorithms on path networks for problems with fixed initial locations of the servers. For problems with flexible locations that should also be optimized, we present polynomial-time algorithms for the case of equal restoration speeds of the servers, and prove that the problems are strongly NP-hard if the restoration speeds of the servers can be different.  相似文献   

7.
With limited economic and physical resources, it is not feasible to continually expand transportation infrastructure to adequately support the rapid growth in its usage. This is especially true for traffic coordination systems where the expansion of road infrastructure has not been able to keep pace with the increasing number of vehicles, thereby resulting in congestion and delays. Hence, in addition to striving for the construction of new roads, it is imperative to develop new intelligent transportation management and coordination systems. The effectiveness of a new technique can be evaluated by comparing it with the optimal capacity utilization. If this comparison indicates that substantial improvements are possible, then the cost of developing and deploying an intelligent traffic system can be justified. Moreover, developing an optimization model can also help in capacity planning. For instance, at a given level of demand, if the optimal solution worsens significantly, this implies that no amount of intelligent strategies can handle this demand, and expanding the infrastructure would be the only alternative. In this paper, we demonstrate these concepts through a case study of scheduling vehicles on a grid of intersecting roads. We develop two optimization models namely, the mixed integer programming model and the space-time network flow model, and show that the latter model is substantially more effective. Moreover, we prove that the problem is strongly NP-hard and develop two polynomial-time heuristics. The heuristic solutions are then compared with the optimal capacity utilization obtained using the space-time network model. We also present important managerial implications.  相似文献   

8.
We study single machine scheduling problems with linear time-dependent deterioration effects and maintenance activities. Maintenance periods (MPs) are included into the schedule, so that the machine, that gets worse during the processing, can be restored to a better state. We deal with a job-independent version of the deterioration effects, that is, all jobs share a common deterioration rate. However, we introduce a novel extension to such models and allow the deterioration rates to change after every MP. We study several versions of this generalized problem and design a range of polynomial-time solution algorithms that enable the decision-maker to determine possible sequences of jobs and MPs in the schedule, so that the makespan objective can be minimized. We show that all problems reduce to a linear assignment problem with a product matrix and can be solved by methods very similar to those used for solving problems with positional effects.  相似文献   

9.
We consider single-machine stochastic scheduling models with due dates as decisions. In addition to showing how to satisfy given service-level requirements, we examine variations of a model in which the tightness of due-dates conflicts with the desire to minimize tardiness. We show that a general form of the trade-off includes the stochastic E/T model and gives rise to a challenging scheduling problem. We present heuristic solution methods based on static and dynamic sorting procedures. Our computational evidence identifies a static heuristic that routinely produces good solutions and a dynamic rule that is nearly always optimal. The dynamic sorting procedure is also asymptotically optimal, meaning that it can be recommended for problems of any size.  相似文献   

10.
Design of survivable IP-over-optical networks   总被引:2,自引:0,他引:2  
In the past years, telecommunications networks have seen an important evolution with the advances in optical technologies and the explosive growth of the Internet. Several optical systems allow a very large transport capacity, and data traffic has dramatically increased. Telecommunications networks are now moving towards a model of high-speed routers interconnected by intelligent optical core networks. Moreover, there is a general consensus that the control plan of the optical networks should utilize IP-based protocols for dynamic provisioning and restoration of lightpaths. The interaction of the IP routers with the optical core networks permits to achieve end-to-end connections, and the lightpaths of the optical networks define the topology of the IP network. This new infrastructure has to be sufficiently survivable, so that network services can be restored in the event of a catastrophic failure. In this paper we consider a multilayer survivable network design problem that may be of practical interest for IP-over-optical neworks. We give an integer programming formulation for this problem and discuss the associated polytope. We describe some valid inequalities and study when these are facet defining. We discuss separation algorithms for these inequalities and introduce some reduction operations. We develop a Branch-and-Cut algorithm based on these results and present extensive computational results.  相似文献   

11.
The paper studies a train scheduling problem faced by railway infrastructure managers during real-time traffic control. When train operations are perturbed, a new conflict-free timetable of feasible arrival and departure times needs to be re-computed, such that the deviation from the original one is minimized. The problem can be viewed as a huge job shop scheduling problem with no-store constraints. We make use of a careful estimation of time separation among trains, and model the scheduling problem with an alternative graph formulation. We develop a branch and bound algorithm which includes implication rules enabling to speed up the computation. An experimental study, based on a bottleneck area of the Dutch rail network, shows that a truncated version of the algorithm provides proven optimal or near optimal solutions within short time limits.  相似文献   

12.
Scheduling for the Earth observation satellites (EOSs) imaging mission is a complicated combinatorial optimization problem, especially for the agile EOSs (AEOSs). The increasing observation requirements and orbiting satellites have exacerbated the scheduling complexity in recent years. In this paper, the single agile satellite, redundant observation targets scheduling problem is studied. We introduce the theory of complex networks and find similarities between AEOS redundant targets scheduling problem and the node centrality ranking problem. Then we model this problem as a complex network, regarding each node as a possible observation opportunity, and define two factors, node importance factor and target importance factor, to describe the node/target importance. Based on the two factors, we propose a fast approximate scheduling algorithm (FASA) to obtain the effective scheduling results. Simulation results indicate the FASA is quite efficient and with broad suitability. Our work is helpful in the EOSs and AEOSs scheduling problems by using complex network knowledge.  相似文献   

13.
运用网络计划可以直观地表示项目管理中的诸多疑难问题, 便于分析和求解. 但是它也存在明显的缺点, 如, (1) 工序网络的有向无回路性表明很多时候适合运用动态规划法, 但它在通常情况下的无阶段性使得该方法无法直接应用; (2) 任意构建的工序网络容易表现得错综复杂, 不利于研究; (3) 用最少的虚工序表示双代号网络是NP-难问题, 因此对一个工序系统可能构建出多个差别迥异的工序网络, 有碍于进度计划管理研究, 等等. 如果能将工序网络构建成等效的多阶段网络, 各工序分别表示在相应的阶段中, 无疑有助于上述问题的解决. 构建等效多阶段工序网络需要添加虚工序. 通过添加最少的虚工序将工序网络构建成等效多阶段网络, 从而有助于建立更合理的工序网络表示法.  相似文献   

14.
The activities of a project are in general characterized by a work content in terms of resource–time units, e.g. person-days. Even though most project scheduling models assume a time-invariant resource usage, normally it is possible to vary the resource usage during the execution of an activity. Typically, a lower and an upper bound on this resource usage and a minimum time lag between consecutive changes of this resource usage are prescribed. The project scheduling problem studied in this paper consists in determining a feasible resource-usage profile for each activity such that the project duration is minimized subject to precedence and resource-capacity constraints. While the known solution methods interpret the prescribed work content as a lower bound, we assume that each activity’s work content must be processed exactly.  相似文献   

15.
In this paper, we consider an adaptive energy efficient sensor scheduling mechanism. We consider a wireless sensor network where the sink sends queries form time to time, and sensors are equipped with one or more sensing components. Our goal is to design an adaptive sensor scheduling mechanism to choose sets of active sensors to work alternatively such that different types of queries are served, the global connectivity requirements can be met, and network lifetime is maximized. A connected dominating set (CDS) based localized mechanism is proposed. Initially, a basic backbone is constructed, then when a query is issued, new sensors are activated locally such that to meet the requirements of the query and global connectivity. When a query expires, some sensors return to sleep and the CDS is restored. Our simulation results show that the solution is effective and it improved network lifetime.  相似文献   

16.
This paper deals with performance evaluation and scheduling problems in m machine stochastic flow shop with unlimited buffers. The processing time of each job on each machine is a random variable exponentially distributed with a known rate. We consider permutation flow shop. The objective is to find a job schedule which minimizes the expected makespan. A classification of works about stochastic flow shop with random processing times is first given. In order to solve the performance evaluation problem, we propose a recursive algorithm based on a Markov chain to compute the expected makespan and a discrete event simulation model to evaluate the expected makespan. The recursive algorithm is a generalization of a method proposed in the literature for the two machine flow shop problem to the m machine flow shop problem with unlimited buffers. In deterministic context, heuristics (like CDS [Management Science 16 (10) (1970) B630] and Rapid Access [Management Science 23 (11) (1977) 1174]) and metaheuristics (like simulated annealing) provide good results. We propose to adapt and to test this kind of methods for the stochastic scheduling problem. Combinations between heuristics or metaheuristics and the performance evaluation models are proposed. One of the objectives of this paper is to compare the methods together. Our methods are tested on problems from the OR-Library and give good results: for the two machine problems, we obtain the optimal solution and for the m machine problems, the methods are mutually validated.  相似文献   

17.
In this paper, we present an exact solution procedure for the design of two-layer wavelength division multiplexing (WDM) optical networks with wavelength changers and bifurcated flows. This design problem closely resembles the traditional multicommodity flow problem, except that in the case of WDM optical networks, we are concerned with the routing of multiple commodities in two network layers. Consequently, the corresponding optimization models have to deal with two types of multicommodity variables defined for each of the network layers. The proposed procedure represents one of the first branch-and-price algorithms for a general WDM optical network setting with no assumptions on the number of logical links that can be established between nodes in the network. We apply our procedure in a computational study with four different network configurations. Our results show that for the three tested network configurations our branch-and-price algorithm provides solutions that are on average less than 5 % from optimality. We also provide a comparison of our branch-and-price algorithm with two simple variants of the upper bounding heuristic procedure HLDA that is commonly used for WDM optical network design.  相似文献   

18.
To effectively utilise hospital beds, operating rooms (OR) and other treatment spaces, it is necessary to precisely plan patient admissions and treatments in advance. As patient treatment and recovery times are unequal and uncertain, this is not easy. In response, a sophisticated flexible job-shop scheduling (FJSS) model is introduced, whereby patients, beds, hospital wards and health care activities are respectively treated as jobs, single machines, parallel machines and operations. Our approach is novel because an entire hospital is describable and schedulable in one integrated approach. The scheduling model can be used to recompute timings after deviations, delays, postponements and cancellations. It also includes advanced conditions such as activity and machine setup times, transfer times between activities, blocking limitations and no wait conditions, timing and occupancy restrictions, buffering for robustness, fixed activities and sequences, release times and strict deadlines. To solve the FJSS problem, constructive algorithms and hybrid meta-heuristics have been developed. Our numerical testing shows that the proposed solution techniques are capable of solving problems of real world size. This outcome further highlights the value of the scheduling model and its potential for integration into actual hospital information systems.  相似文献   

19.
The decision problem considered in this paper is a hierarchical workforce scheduling problem in which a higher qualified worker can substitute for a lower qualified one, but not vice versa, labour requirements may vary, and each worker must receive n off-days a week. Within this context, five mathematical models are discussed. The first two of these five models are previously published. Both of them are for the case where the work is indivisible. The remaining three models are developed by the authors of this paper. One of these new models is for the case where the work is indivisible and the other two are for the case where the work is divisible. The three new models are proposed with the purpose of removing the shortcomings of the previously published two models. All of the five models are applied on the same illustrative example. Additionally, a total of 108 test problems are solved within the context of two computational experiments.  相似文献   

20.
Efficient Batch Job Scheduling in Grids Using Cellular Memetic Algorithms   总被引:1,自引:0,他引:1  
Computational grids are an important emerging paradigm for large-scale distributed computing. As grid systems become more wide-spread, techniques for efficiently exploiting the large amount of grid computing resources become increasingly indispensable. A key aspect in order to benefit from these resources is the scheduling of jobs to grid resources. Due to the complex nature of grid systems, the design of efficient grid schedulers becomes challenging since such schedulers have to be able to optimize many conflicting criteria in very short periods of time. This problem has been tackled in the literature by several different metaheuristics, and our main focus in this work is to develop a new highly competitive technique with respect to the existing ones. For that, we exploit the capabilities of cellular memetic algorithms (cMAs), a kind of memetic algorithm with structured population, for obtaining efficient batch schedulers for grid systems, and the obtained results will be compared versus the state of the art. A careful design of the cMA methods and operators for the problem yielded to an efficient and robust implementation. Our experimental study, based on a known static benchmark for the problem, shows that this heuristic approach is able to deliver very high quality planning of jobs to grid nodes and thus it can be used to design efficient dynamic schedulers for real grid systems. Such dynamic schedulers can be obtained by running the cMA-based scheduler in batch mode for a very short time to schedule jobs arriving in the system since the last activation of the cMA scheduler. This work has been partially funded by the Spanish MEC and FEDER under contract TIN2005-08818-C04-01 (the OPLINK project: ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号