首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In this paper, an adaptive nonmonotone line search method for unconstrained minimization problems is proposed. At every iteration, the new algorithm selects only one of the two directions: a Newton-type direction and a negative curvature direction, to perform the line search. The nonmonotone technique is included in the backtracking line search when the Newton-type direction is the search direction. Furthermore, if the negative curvature direction is the search direction, we increase the steplength under certain conditions. The global convergence to a stationary point with second-order optimality conditions is established. Some numerical results which show the efficiency of the new algorithm are reported.   相似文献   

2.
A new subspace minimization conjugate gradient algorithm with a nonmonotone Wolfe line search is proposed and analyzed. In the scheme, we propose two choices of the search direction by minimizing a quadratic approximation of the objective function in special subspaces, and state criterions on how to choose the direction. Under given conditions, we obtain the significant conclusion that each choice of the direction satisfies the sufficient descent property. Based on the idea on how the function is close to a quadratic function, a new strategy for choosing the initial stepsize is presented for the line search. With the used nonmonotone Wolfe line search, we prove the global convergence of the proposed method for general nonlinear functions under mild assumptions. Numerical comparisons are given with well-known CGOPT and CG_DESCENT and show that the proposed algorithm is very promising.  相似文献   

3.
In this paper, we present a sequential quadratically constrained quadratic programming (SQCQP) norm-relaxed algorithm of strongly sub-feasible directions for the solution of inequality constrained optimization problems. By introducing a new unified line search and making use of the idea of strongly sub-feasible direction method, the proposed algorithm can well combine the phase of finding a feasible point (by finite iterations) and the phase of a feasible descent norm-relaxed SQCQP algorithm. Moreover, the former phase can preserve the “sub-feasibility” of the current iteration, and control the increase of the objective function. At each iteration, only a consistent convex quadratically constrained quadratic programming problem needs to be solved to obtain a search direction. Without any other correctional directions, the global, superlinear and a certain quadratic convergence (which is between 1-step and 2-step quadratic convergence) properties are proved under reasonable assumptions. Finally, some preliminary numerical results show that the proposed algorithm is also encouraging.  相似文献   

4.
A tolerant derivative–free nonmonotone line-search technique is proposed and analyzed. Several consecutive increases in the objective function and also nondescent directions are admitted for unconstrained minimization. To exemplify the power of this new line search we describe a direct search algorithm in which the directions are chosen randomly. The convergence properties of this random method rely exclusively on the line-search technique. We present numerical experiments, to illustrate the advantages of using a derivative-free nonmonotone globalization strategy, with approximated-gradient type methods and also with the inverse SR1 update that could produce nondescent directions. In all cases we use a local variation finite differences approximation to the gradient.  相似文献   

5.
In this paper, we propose a new regularized quasi-Newton method for unconstrained optimization. At each iteration, a regularized quasi-Newton equation is solved to obtain the search direction. The step size is determined by a non-monotone Armijo backtracking line search. An adaptive regularized parameter, which is updated according to the step size of the line search, is employed to compute the next search direction. The presented method is proved to be globally convergent. Numerical experiments show that the proposed method is effective for unconstrained optimizations and outperforms the existing regularized Newton method.  相似文献   

6.
In this paper, a new gradient-related algorithm for solving large-scale unconstrained optimization problems is proposed. The new algorithm is a kind of line search method. The basic idea is to choose a combination of the current gradient and some previous search directions as a new search direction and to find a step-size by using various inexact line searches. Using more information at the current iterative step may improve the performance of the algorithm. This motivates us to find some new gradient algorithms which may be more effective than standard conjugate gradient methods. Uniformly gradient-related conception is useful and it can be used to analyze global convergence of the new algorithm. The global convergence and linear convergence rate of the new algorithm are investigated under diverse weak conditions. Numerical experiments show that the new algorithm seems to converge more stably and is superior to other similar methods in many situations.  相似文献   

7.
In this paper we propose a new line search algorithm that ensures global convergence of the Polak-Ribière conjugate gradient method for the unconstrained minimization of nonconvex differentiable functions. In particular, we show that with this line search every limit point produced by the Polak-Ribière iteration is a stationary point of the objective function. Moreover, we define adaptive rules for the choice of the parameters in a way that the first stationary point along a search direction can be eventually accepted when the algorithm is converging to a minimum point with positive definite Hessian matrix. Under strong convexity assumptions, the known global convergence results can be reobtained as a special case. From a computational point of view, we may expect that an algorithm incorporating the step-size acceptance rules proposed here will retain the same good features of the Polak-Ribière method, while avoiding pathological situations. This research was supported by Agenzia Spaziale Italiana, Rome, Italy.  相似文献   

8.
In this paper, a class of general nonlinear programming problems with inequality and equality constraints is discussed. Firstly, the original problem is transformed into an associated simpler equivalent problem with only inequality constraints. Then, inspired by the ideals of the sequential quadratic programming (SQP) method and the method of system of linear equations (SLE), a new type of SQP algorithm for solving the original problem is proposed. At each iteration, the search direction is generated by the combination of two directions, which are obtained by solving an always feasible quadratic programming (QP) subproblem and a SLE, respectively. Moreover, in order to overcome the Maratos effect, the higher-order correction direction is obtained by solving another SLE. The two SLEs have the same coefficient matrices, and we only need to solve the one of them after a finite number of iterations. By a new line search technique, the proposed algorithm possesses global and superlinear convergence under some suitable assumptions without the strict complementarity. Finally, some comparative numerical results are reported to show that the proposed algorithm is effective and promising.  相似文献   

9.
郭洁  万中 《计算数学》2022,44(3):324-338
基于指数罚函数,对最近提出的一种求解无约束优化问题的三项共轭梯度法进行了修正,并用它求解更复杂的大规模极大极小值问题.证明了该方法生成的搜索方向对每一个光滑子问题是充分下降方向,而且与所用的线搜索规则无关.以此为基础,设计了求解大规模极大极小值问题的算法,并在合理的假设下,证明了算法的全局收敛性.数值实验表明,该算法优于文献中已有的类似算法.  相似文献   

10.
Multicriteria optimization with a multiobjective golden section line search   总被引:1,自引:0,他引:1  
This work presents an algorithm for multiobjective optimization that is structured as: (i) a descent direction is calculated, within the cone of descent and feasible directions, and (ii) a multiobjective line search is conducted over such direction, with a new multiobjective golden section segment partitioning scheme that directly finds line-constrained efficient points that dominate the current one. This multiobjective line search procedure exploits the structure of the line-constrained efficient set, presenting a faster compression rate of the search segment than single-objective golden section line search. The proposed multiobjective optimization algorithm converges to points that satisfy the Kuhn-Tucker first-order necessary conditions for efficiency (the Pareto-critical points). Numerical results on two antenna design problems support the conclusion that the proposed method can solve robustly difficult nonlinear multiobjective problems defined in terms of computationally expensive black-box objective functions.  相似文献   

11.
We present modifications of the generalized conjugate gradient algorithm of Liu and Storey for unconstrained optimization problems (Ref. 1), extending its applicability to situations where the search directions are not defined. The use of new search directions is proposed and one additional condition is imposed on the inexact line search. The convergence of the resulting algorithm can be established under standard conditions for a twice continuously differentiable function with a bounded level set. Algorithms based on these modifications have been tested on a number of problems, showing considerable improvements. Comparisons with the BFGS and other quasi-Newton methods are also given.  相似文献   

12.
UNIRANDI is a stochastic local search algorithm that performs line searches from starting points along good random directions. In this paper, we focus on a modified version of this method. The new algorithm, addition to the random directions, considers more promising directions in order to speed up the optimization process. The performance of the new method is tested empirically on standard test functions in terms of function evaluations, success rates, error values, and CPU time. It is also compared to the previous version as well as other local search methods. Numerical results show that the new method is promising in terms of robustness and efficiency.  相似文献   

13.
We introduce an interior-point method for symmetric optimization based on a new method for determining search directions. In order to accomplish this, we use a new equivalent algebraic transformation on the centring equation of the system which characterizes the central path. In this way, we obtain a new class of directions. We analyse a special case of this class, which leads to the new interior-point algorithm mentioned before. Another way to find the search directions is using barriers derived from kernel functions. We show that in our case the corresponding direction cannot be deduced from a usual kernel function. In spite of this fact, we prove the polynomial complexity of the proposed algorithm.  相似文献   

14.
In this paper, we first present an adaptive nonmonotone term to improve the efficiency of nonmonotone line search, and then an active set identification technique is suggested to get more efficient descent direction such that it improves the local convergence behavior of algorithm and decreases the computation cost. By means of the adaptive nonmonotone line search and the active set identification technique, we put forward a global convergent gradient-based method to solve the nonnegative matrix factorization (NMF) based on the alternating nonnegative least squares framework, in which we introduce a modified Barzilai-Borwein (BB) step size. The new modified BB step size and the larger step size strategy are exploited to accelerate convergence. Finally, the results of extensive numerical experiments using both synthetic and image datasets show that our proposed method is efficient in terms of computational speed.  相似文献   

15.
Hybridizing monotone and nonmonotone approaches, we employ a modified trust region ratio in which more information is provided about the agreement between the exact and the approximate models. Also, we use an adaptive trust region radius as well as two accelerated Armijo-type line search strategies to avoid resolving the trust region subproblem whenever a trial step is rejected. We show that the proposed algorithm is globally and locally superlinearly convergent. Comparative numerical experiments show practical efficiency of the proposed accelerated adaptive trust region algorithm.  相似文献   

16.
《Optimization》2012,61(9):1935-1955
The second-order cone complementarity problem (denoted by SOCCP) can be effectively solved by smoothing-type algorithms, which in general are designed based on some monotone line search. In this paper, based on a new smoothing function of the Fischer–Burmeister function, we propose a smoothing-type algorithm for solving the SOCCP. The proposed algorithm uses a new nonmonotone line search scheme, which contains the usual monotone line search as a special case. Under suitable assumptions, we show that the proposed algorithm is globally and locally quadratically convergent. Some numerical results are reported which indicate the effectiveness of the proposed algorithm.  相似文献   

17.
拆卸是产品回收过程最关键环节之一,拆卸效率直接影响再制造成本。本文在分析现有模型不足基础上,考虑最小化总拆卸时间,建立多目标顺序相依拆卸线平衡问题优化模型,并提出了一种自适应进化变邻域搜索算法。所提算法引入种群进化机制,并采用一种组合策略构建初始种群,通过锦标赛法选择个体进化;在局部搜索时,设计了邻域结构自适应选择策略,并采用基于交叉的全局学习机制加速跳出局部最优,以提高算法寻优能力。对比实验结果,证实了所提模型的合理性以及算法的高效性。  相似文献   

18.
In this paper, we generalize a primal–dual path-following interior-point algorithm for linear optimization to symmetric optimization by using Euclidean Jordan algebras. The proposed algorithm is based on a new technique for finding the search directions and the strategy of the central path. At each iteration, we use only full Nesterov–Todd steps. Moreover, we derive the currently best known iteration bound for the small-update method. This unifies the analysis for linear, second-order cone, and semidefinite optimizations.  相似文献   

19.
In this paper we introduce a new smoothing function and show that it is coercive under suitable assumptions. Based on this new function, we propose a smoothing Newton method for solving the second-order cone complementarity problem (SOCCP). The proposed algorithm solves only one linear system of equations and performs only one line search at each iteration. It is shown that any accumulation point of the iteration sequence generated by the proposed algorithm is a solution to the SOCCP. Furthermore, we prove that the generated sequence is bounded if the solution set of the SOCCP is nonempty and bounded. Under the assumption of nonsingularity, we establish the local quadratic convergence of the algorithm without the strict complementarity condition. Numerical results indicate that the proposed algorithm is promising.  相似文献   

20.
In this paper, a new spectral PRP conjugate gradient algorithm has been developed for solving unconstrained optimization problems, where the search direction was a kind of combination of the gradient and the obtained direction, and the steplength was obtained by the Wolfe-type inexact line search. It was proved that the search direction at each iteration is a descent direction of objective function. Under mild conditions, we have established the global convergence theorem of the proposed method. Numerical results showed that the algorithm is promising, particularly, compared with the existing several main methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号