首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider the weighted Bergman spaces HL2(\mathbb Bd, ml){\mathcal {H}L^{2}(\mathbb {B}^{d}, \mu_{\lambda})}, where we set dml(z) = cl(1-|z|2)l dt(z){d\mu_{\lambda}(z) = c_{\lambda}(1-|z|^2)^{\lambda} d\tau(z)}, with τ being the hyperbolic volume measure. These spaces are nonzero if and only if λ > d. For 0 < λ ≤ d, spaces with the same formula for the reproducing kernel can be defined using a Sobolev-type norm. We define Toeplitz operators on these generalized Bergman spaces and investigate their properties. Specifically, we describe classes of symbols for which the corresponding Toeplitz operators can be defined as bounded operators or as a Hilbert–Schmidt operators on the generalized Bergman spaces.  相似文献   

2.
We define a generalized Li coefficient for the L-functions attached to the Rankin–Selberg convolution of two cuspidal unitary automorphic representations π and π of GLm(\mathbbAF)GL_{m}(\mathbb{A}_{F}) and GLm(\mathbbAF)GL_{m^{\prime }}(\mathbb{A}_{F}) . Using the explicit formula, we obtain an arithmetic representation of the n th Li coefficient lp,p(n)\lambda _{\pi ,\pi ^{\prime }}(n) attached to L(s,pf×[(p)\tilde]f)L(s,\pi _{f}\times \widetilde{\pi}_{f}^{\prime }) . Then, we deduce a full asymptotic expansion of the archimedean contribution to lp,p(n)\lambda _{\pi ,\pi ^{\prime }}(n) and investigate the contribution of the finite (non-archimedean) term. Under the generalized Riemann hypothesis (GRH) on non-trivial zeros of L(s,pf×[(p)\tilde]f)L(s,\pi _{f}\times \widetilde{\pi}_{f}^{\prime }) , the nth Li coefficient lp,p(n)\lambda _{\pi ,\pi ^{\prime }}(n) is evaluated in a different way and it is shown that GRH implies the bound towards a generalized Ramanujan conjecture for the archimedean Langlands parameters μ π (v,j) of π. Namely, we prove that under GRH for L(s,pf×[(p)\tilde]f)L(s,\pi _{f}\times \widetilde{\pi}_{f}) one has |Remp(v,j)| £ \frac14|\mathop {\mathrm {Re}}\mu_{\pi}(v,j)|\leq \frac{1}{4} for all archimedean places v at which π is unramified and all j=1,…,m.  相似文献   

3.
We study the asymptotics of the spectrum of the Maxwell operator M in a bounded Lipschitz domain W ì \mathbbR3 \Omega \subset {\mathbb{R}^3} under the condition of the perfect conductivity of the boundary ∂Ω. We obtain the following estimate for the remainder in the Weyl asymptotic expansion of the counting function N(λ,M) of positive eigenvalues of the Maxwell operator M:
N( l, M ) = \frac\textmeas W3p2l3( 1 + O( l - 2 / 5 ) ), N\left( {\lambda, M} \right) = \frac{{{\text{meas }}\Omega }}{{3{\pi^2}}}{\lambda^3}\left( {1 + O\left( {{\lambda^{{{{ - 2}} \left/ {5} \right.}}}} \right)} \right),  相似文献   

4.
Let g be a negatively curved Riemannian metric of a closed C manifold M of dimension at least three. Let L λ be a C one-parameter convex superlinear Lagrangian on TM such that L0(v) = \frac12 g(v, v){L_0(v)= \frac{1}{2} g(v, v)} for any vTM. We denote by jl{\varphi^\lambda} the restriction of the Euler-Lagrange flow of L λ on the \frac12{\frac{1}{2}} -energy level. If λ is small enough then the flow jl{\varphi^\lambda} is Anosov. In this paper we study the geometric consequences of different assumptions about the regularity of the Anosov distributions of jl{\varphi^\lambda} . For example, in the case that the initial Riemannian metric g is real hyperbolic, we prove that for λ small, jl{\varphi^\lambda} has C 3 weak stable and weak unstable distributions if and only if jl{\varphi^\lambda} is C orbit equivalent to the geodesic flow of g.  相似文献   

5.
Let X1, X2, ... be i.i.d. random variables satisfying the condition
\textE X12 \text elX1 < ¥\text for\text some\text l > 0.{\text{E }}X_1^2 {\text{ }}e^{\lambda X_1 } < \infty {\text{ }}for{\text{ }}some{\text{ }}\lambda >0.  相似文献   

6.
Given g { l\fracn2 g( lj x - kb ) }jezjezn ,where  lj \left\{ {\lambda ^{\frac{n}{2}} g\left( {\lambda _j x - kb} \right)} \right\}_{j\varepsilon zj\varepsilon z^n } ,where\;\lambda _j > 0 and b > 0. Sufficient conditions for the wavelet system to constitute a frame for L 2(R n ) are given. For a class of functions g{ ezrib( j,x ) g( x - lk ) }jezn ,kez\left\{ {e^{zrib\left( {j,x} \right)} g\left( {x - \lambda _k } \right)} \right\}_{j\varepsilon z^n ,k\varepsilon z} to be a frame.  相似文献   

7.
In this paper, we mainly study polynomial generalized Vekua-type equation _boxclose)w=0{p(\mathcal{D})w=0} and polynomial generalized Bers–Vekua equation p(D)w=0{p(\mathcal{\underline{D}})w=0} defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}} where D{\mathcal{D}} and D{\mathcal{\underline{D}}} mean generalized Vekua-type operator and generalized Bers–Vekua operator, respectively. Using Clifford algebra, we obtain the Fischer-type decomposition theorems for the solutions to these equations including (D-l)kw=0,(D-l)kw=0(k ? \mathbbN){\left(\mathcal{D}-\lambda\right)^{k}w=0,\left(\mathcal {\underline{D}}-\lambda\right)^{k}w=0\left(k\in\mathbb{N}\right)} with complex parameter λ as special cases, which derive the Almansi-type decomposition theorems for iterated generalized Bers–Vekua equation and polynomial generalized Cauchy–Riemann equation defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}}. Making use of the decomposition theorems we give the solutions to polynomial generalized Bers–Vekua equation defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}} under some conditions. Furthermore we discuss inhomogeneous polynomial generalized Bers–Vekua equation p(D)w=v{p(\mathcal{\underline{D}})w=v} defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}}, and develop the structure of the solutions to inhomogeneous polynomial generalized Bers–Vekua equation p(D)w=v{p(\mathcal{\underline{D}})w=v} defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}}.  相似文献   

8.
In this work, we consider the Jacobi-Dunkl operator Λ α,β , a 3 b 3 \frac-12\alpha\geq\beta\geq\frac{-1}{2} , a 1 \frac-12\alpha\neq\frac{-1}{2} , on ℝ. The eigenfunction Yla,b\Psi_{\lambda}^{\alpha,\beta} of this operator permits to define the Jacobi-Dunkl transform. The main idea in this paper is to introduce and study the Jacobi-Dunkl transform and the Jacobi-Dunkl convolution product on new spaces of distributions  相似文献   

9.
Using the approximate functional equation for L(l,a, s) = ?n=0 [(e(ln))/((n+a)s)] L(\lambda,\alpha, s) = \sum\limits_{n=0}^{\infty} {e(\lambda n)\over (n+\alpha)^s} , we prove for fixed parameters $ 0<\lambda,\alpha\leq 1 $ 0<\lambda,\alpha\leq 1 asymptotic formulas for the mean square of L(l,a,s) L(\lambda,\alpha,s) inside the critical strip. This improves earlier results of D. Klusch and of A. Laurin)ikas.  相似文献   

10.
LetR n be n-dimensional Euclidean space with n>-3. Demote by Ω n the unit sphere inR n. ForfɛL n ) we denote by σ N δ its Cesàro means of order σ for spherical harmonic expansions. The special value l = \tfracn - 22\lambda = \tfrac{{n - 2}}{2} of σ is known as the critical one. For 0<σ≤λ, we set p0 = \tfrac2ld+ lp_0 = \tfrac{{2\lambda }}{{\delta + \lambda }} . This paper proves that
limN ? ¥ || sNd (f) - f ||p0 = 0\mathop {\lim }\limits_{N \to \infty } \left\| {\sigma _N^\delta (f) - f} \right\|p_0 = 0  相似文献   

11.
On the assumption of the truth of the Riemann hypothesis for the Riemann zeta function we construct a class of modified von-Mangoldt functions with slightly better mean value properties than the well known function L\Lambda . For every e ? (0,1/2)\varepsilon \in (0,1/2) there is a [(L)\tilde] : \Bbb N ? \Bbb C\tilde {\Lambda} : \Bbb N \to \Bbb C such that¶ i) [(L)\tilde] (n) = L (n) (1 + O(n-1/4  logn))\tilde {\Lambda} (n) = \Lambda (n) (1 + O(n^{-1/4\,} \log n)) and¶ii) ?n \leqq x [(L)\tilde] (n) (1- [(n)/(x)]) = [(x)/2] + O(x1/4+e) (x \geqq 2).\sum \limits_{n \leqq x} \tilde {\Lambda} (n) \left(1- {{n}\over{x}}\right) = {{x}\over{2}} + O(x^{1/4+\varepsilon }) (x \geqq 2).¶Unfortunately, this does not lead to an improved error term estimation for the unweighted sum ?n \leqq x [(L)\tilde] (n)\sum \limits_{n \leqq x} \tilde {\Lambda} (n), which would be of importance for the distance between consecutive primes.  相似文献   

12.
We consider the spectral decomposition of A, the generator of a polynomially bounded n-times integrated group whose spectrum set $\sigma(A)=\{i\lambda_{k};k\in\mathbb{\mathbb{Z}}^{*}\}We consider the spectral decomposition of A, the generator of a polynomially bounded n-times integrated group whose spectrum set s(A)={ilk;k ? \mathbb\mathbbZ*}\sigma(A)=\{i\lambda_{k};k\in\mathbb{\mathbb{Z}}^{*}\} is discrete and satisfies ?\frac1|lk|ldkn < ¥\sum \frac{1}{|\lambda_{k}|^{\ell}\delta_{k}^{n}}<\infty , where is a nonnegative integer and dk=min(\frac|lk+1-lk|2,\frac|lk-1-lk|2)\delta _{k}=\min(\frac{|\lambda_{k+1}-\lambda _{k}|}{2},\frac{|\lambda _{k-1}-\lambda _{k}|}{2}) . In this case, Theorem 3, we show by using Gelfand’s Theorem that there exists a family of projectors (Pk)k ? \mathbb\mathbbZ*(P_{k})_{k\in\mathbb{\mathbb{Z}}^{*}} such that, for any xD(A n+ ), the decomposition ∑P k x=x holds.  相似文献   

13.
We obtain two results concerning the Feichtinger conjecture for systems of normalized reproducing kernels in the model subspace K Θ=H 2⊖ΘH 2 of the Hardy space H 2, where Θ is an inner function. First, we verify the Feichtinger conjecture for the kernels [(k)\tilde]ln=kln/||kln||\tilde{k}_{\lambda_{n}}=k_{\lambda_{n}}/\|k_{\lambda _{n}}\| under the assumption that sup  n |Θ(λ n )|<1. Second, we prove the Feichtinger conjecture in the case where Θ is a one-component inner function, meaning that the set {z:|Θ(z)|<ε} is connected for some ε∈(0,1).  相似文献   

14.
In Finsler geometry, minimal surfaces with respect to the Busemann-Hausdorff measure and the Holmes-Thompson measure are called BH-minimal and HT-minimal surfaces, respectively. In this paper, we give the explicit expressions of BH-minimal and HT-minimal rotational hypersurfaces generated by plane curves rotating around the axis in the direction of [(b)\tilde]\sharp{\tilde{\beta}^{\sharp}} in Minkowski (α, β)-space (\mathbbVn+1,[(Fb)\tilde]){(\mathbb{V}^{n+1},\tilde{F_b})} , where \mathbbVn+1{\mathbb{V}^{n+1}} is an (n+1)-dimensional real vector space, [(Fb)\tilde]=[(a)\tilde]f([(b)\tilde]/[(a)\tilde]), [(a)\tilde]{\tilde{F_b}=\tilde{\alpha}\phi(\tilde{\beta}/\tilde{\alpha}), \tilde{\alpha}} is the Euclidean metric, [(b)\tilde]{\tilde{\beta}} is a one form of constant length b:=||[(b)\tilde]||[(a)\tilde], [(b)\tilde]\sharp{b:=\|\tilde{\beta}\|_{\tilde{\alpha}}, \tilde{\beta}^{\sharp}} is the dual vector of [(b)\tilde]{\tilde{\beta}} with respect to [(a)\tilde]{\tilde{\alpha}} . As an application, we first give the explicit expressions of the forward complete BH-minimal rotational surfaces generated around the axis in the direction of [(b)\tilde]\sharp{\tilde{\beta}^{\sharp}} in Minkowski Randers 3-space (\mathbbV3,[(a)\tilde]+[(b)\tilde]){(\mathbb{V}^{3},\tilde{\alpha}+\tilde{\beta})} .  相似文献   

15.
Let V be a finite dimensional p-adic vector space and let τ be an operator in GL(V). A probability measure μ on V is called τ-decomposable or m ? [(L)\tilde]0(t)\mu\in {\tilde L}_0(\tau) if μ = τ(μ)* ρ for some probability measure ρ on V. Moreover, when τ is contracting, if ρ is infinitely divisible, so is μ, and if ρ is embeddable, so is μ. These two subclasses of [(L)\tilde]0(t){\tilde L}_0(\tau) are denoted by L 0(τ) and L 0 #(τ) respectively. When μ is infinitely divisible τ-decomposable for a contracting τ and has no idempotent factors, then it is τ-semi-selfdecomposable or operator semi-selfdecomposable. In this paper, sequences of decreasing subclasses of the above mentioned three classes, [(L)\tilde]m(t) é Lm(t) é L#m(t), 1 £ m £ ¥{\tilde L}_m(\tau)\supset L_m(\tau) \supset L^\#_m(\tau), 1\le m\le \infty , are introduced and several properties and characterizations are studied. The results obtained here are p-adic vector space versions of those given for probability measures on Euclidean spaces.  相似文献   

16.
A new generalized Radon transform R α, β on the plane for functions even in each variable is defined which has natural connections with the bivariate Hankel transform, the generalized biaxially symmetric potential operator Δ α, β , and the Jacobi polynomials Pk(b, a)(t)P_{k}^{(\beta,\,\alpha)}(t). The transform R α, β and its dual Ra, b*R_{\alpha,\,\beta}^{\ast} are studied in a systematic way, and in particular, the generalized Fuglede formula and some inversion formulas for R α, β for functions in La, bp(\mathbbR2+)L_{\alpha,\,\beta}^{p}(\mathbb{R}^{2}_{+}) are obtained in terms of the bivariate Hankel–Riesz potential. Moreover, the transform R α, β is used to represent the solutions of the partial differential equations Lu:=?j=1majDa, bju=fLu:=\sum_{j=1}^{m}a_{j}\Delta_{\alpha,\,\beta}^{j}u=f with constant coefficients a j and the Cauchy problem for the generalized wave equation associated with the operator Δ α, β . Another application is that, by an invariant property of R α, β , a new product formula for the Jacobi polynomials of the type Pk(b, a)(s)C2ka+b+1(t)=còòPk(b, a)P_{k}^{(\beta,\,\alpha)}(s)C_{2k}^{\alpha+\beta+1}(t)=c\int\!\!\int P_{k}^{(\beta,\,\alpha)} is obtained.  相似文献   

17.
In [C.K. Chui and X.L. Shi, Inequalities of Littlewood-Paley type for frames and wavelets, SIAM J. Math. Anal., 24 (1993), 263–277], the authors proved that if {eimbxg(x-na): m,n ? \Bbb Z}\{e^{imbx}g(x-na): m,n\in{\Bbb Z}\} is a Gabor frame for L2(\Bbb R)L^2({\Bbb R}) with frame bounds A and B, then the following two inequalities hold: A £ \frac2pb?n ? \Bbb Z|g(x-na)|2B,     a.e.A\le \frac{2\pi}{b}\sum_{n\in{\Bbb Z}}\vert g(x-na)\vert^2\le B, \quad a.e. and A £ \frac1a?m ? \Bbb Z|[^(g)](w-mb)|2B,     a.e.A\le \frac{1}{a}\sum_{m\in{\Bbb Z}}\vert \hat{g}(\omega-mb)\vert^2\le B, \quad a.e. . In this paper, we show that similar inequalities hold for multi-generated irregular Gabor frames of the form è1 £ kr{eiáx, l?gk(x-m): m ? Dk, l ? Lk }\bigcup_{1\le k\le r}\{e^{i\langle x, \lambda\rangle}g_{k}(x-\mu):\, \mu\in \Delta_k, \lambda\in\Lambda_k \} , where Δ k and Λ k are arbitrary sequences of points in \Bbb Rd{\Bbb R}^d and gk ? L2(\Bbb Rd)g_k\in{L^2{(\Bbb R}^d)} , 1 ≤ kr.  相似文献   

18.
It is proved that if positive definite matrix functions (i.e. matrix spectral densities) S n , n=1,2,… , are convergent in the L 1-norm, ||Sn-S||L1? 0\|S_{n}-S\|_{L_{1}}\to 0, and ò02plogdetSn(eiqdq?ò02plogdetS(eiqdq\int_{0}^{2\pi}\log \mathop{\mathrm{det}}S_{n}(e^{i\theta})\,d\theta\to\int_{0}^{2\pi}\log \mathop{\mathrm{det}}S(e^{i\theta})\,d\theta, then the corresponding (canonical) spectral factors are convergent in L 2, ||S+n-S+||L2? 0\|S^{+}_{n}-S^{+}\|_{L_{2}}\to 0. The formulated logarithmic condition is easily seen to be necessary for the latter convergence to take place.  相似文献   

19.
We consider the space A(\mathbbT)A(\mathbb{T}) of all continuous functions f on the circle \mathbbT\mathbb{T} such that the sequence of Fourier coefficients [^(f)] = { [^(f)]( k ), k ? \mathbbZ }\hat f = \left\{ {\hat f\left( k \right), k \in \mathbb{Z}} \right\} belongs to l 1(ℤ). The norm on A(\mathbbT)A(\mathbb{T}) is defined by || f ||A(\mathbbT) = || [^(f)] ||l1 (\mathbbZ)\left\| f \right\|_{A(\mathbb{T})} = \left\| {\hat f} \right\|_{l^1 (\mathbb{Z})}. According to the well-known Beurling-Helson theorem, if f:\mathbbT ? \mathbbT\phi :\mathbb{T} \to \mathbb{T} is a continuous mapping such that || einf ||A(\mathbbT) = O(1)\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = O(1), n ∈ ℤ then φ is linear. It was conjectured by Kahane that the same conclusion about φ is true under the assumption that || einf ||A(\mathbbT) = o( log| n | )\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = o\left( {\log \left| n \right|} \right). We show that if $\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = o\left( {\left( {{{\log \log \left| n \right|} \mathord{\left/ {\vphantom {{\log \log \left| n \right|} {\log \log \log \left| n \right|}}} \right. \kern-\nulldelimiterspace} {\log \log \log \left| n \right|}}} \right)^{1/12} } \right)$\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = o\left( {\left( {{{\log \log \left| n \right|} \mathord{\left/ {\vphantom {{\log \log \left| n \right|} {\log \log \log \left| n \right|}}} \right. \kern-\nulldelimiterspace} {\log \log \log \left| n \right|}}} \right)^{1/12} } \right), then φ is linear.  相似文献   

20.
We find some optimal estimates for the first eigenfunction of a class of elliptic equations whose prototype is - ( guxi )xi = lgu \textin W ì \mathbbRn - {\left( {\gamma u_{{x_{i} }} } \right)}_{{x_{i} }} = \lambda \gamma u\,{\text{in}}\,\Omega \subset \mathbb{R}^{n} with Dirichlet boundary condition, where γ is the normalized Gaussian function in \mathbbRn \mathbb{R}^{n} . To this aim we make use of the Gaussian symmetrization which transforms a domain into an half-space with the same Gaussian measure. The main tools we use are the properties of the weighted rearrangements and in particular the isoperimetric inequality with respect to Gaussian measure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号