首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
In this study, we consider an insurer who manages her underlying risk by purchasing proportional reinsurance and investing in a financial market consisting of a risk-free bond and a risky asset. The objective of the insurer is to identify an investment–reinsurance strategy that minimizes the mean–variance cost function. We obtain a time-consistent open-loop equilibrium strategy and the corresponding efficient frontier in explicit form using two systems of backward stochastic differential equations. Furthermore, we apply our results to Vasiček’s stochastic interest rate model and Heston’s stochastic volatility model. In both cases, we obtain a closed-form solution.  相似文献   

2.
In this paper, we consider the time-consistent reinsurance–investment strategy under the mean–variance criterion for an insurer whose surplus process is described by a Brownian motion with drift. The insurer can transfer part of the risk to a reinsurer via proportional reinsurance or acquire new business. Moreover, stochastic interest rate and inflation risks are taken into account. To reduce the two kinds of risks, not only a risk-free asset and a risky asset, but also a zero-coupon bond and Treasury Inflation Protected Securities (TIPS) are available to invest in for the insurer. Applying stochastic control theory, we provide and prove a verification theorem and establish the corresponding extended Hamilton–Jacobi–Bellman (HJB) equation. By solving the extended HJB equation, we derive the time-consistent reinsurance–investment strategy as well as the corresponding value function for the mean–variance problem, explicitly. Furthermore, we formulate a precommitment mean–variance problem and obtain the corresponding time-inconsistent strategy to compare with the time-consistent strategy. Finally, numerical simulations are presented to illustrate the effects of model parameters on the time-consistent strategy.  相似文献   

3.
This paper investigates an asset allocation problem for defined contribution pension funds with stochastic income and mortality risk under a multi-period mean–variance framework. Different from most studies in the literature where the expected utility is maximized or the risk measured by the quadratic mean deviation is minimized, we consider synthetically both to enhance the return and to control the risk by the mean–variance criterion. First, we obtain the analytical expressions for the efficient investment strategy and the efficient frontier by adopting the Lagrange dual theory, the state variable transformation technique and the stochastic optimal control method. Then, we discuss some special cases under our model. Finally, a numerical example is presented to illustrate the results obtained in this paper.  相似文献   

4.
In this paper, we propose a multi-period portfolio optimization model with stochastic cash flows. Under the mean–variance preference, we derive the pre-commitment and time-consistent investment strategies by applying the embedding scheme and backward induction approach, respectively. We show that the time-consistent strategy is identical to the optimal open-loop strategy. Also, under the exponential utility preference, we develop the optimal strategy for multi-period investment, which is time-consistent. We show that the above two time-consistent strategies are equivalent in some cases. We compare the pre-commitment and time-consistent strategies under different situations with some numerical simulations. The results indicate that the time-consistent strategy is more stable and secure than pre-commitment strategy under the generalized mean–variance criterion.  相似文献   

5.
This paper investigates an optimal investment strategy of DC pension plan in a stochastic interest rate and stochastic volatility framework. We apply an affine model including the Cox–Ingersoll–Ross (CIR) model and the Vasicek mode to characterize the interest rate while the stock price is given by the Heston’s stochastic volatility (SV) model. The pension manager can invest in cash, bond and stock in the financial market. Thus, the wealth of the pension fund is influenced by the financial risks in the market and the stochastic contribution from the fund participant. The goal of the fund manager is, coping with the contribution rate, to maximize the expectation of the constant relative risk aversion (CRRA) utility of the terminal value of the pension fund over a guarantee which serves as an annuity after retirement. We first transform the problem into a single investment problem, then derive an explicit solution via the stochastic programming method. Finally, the numerical analysis is given to show the impact of financial parameters on the optimal strategies.  相似文献   

6.
This paper studies the optimal consumption–investment–reinsurance problem for an insurer with a general discount function and exponential utility function in a non-Markovian model. The appreciation rate and volatility of the stock, the premium rate and volatility of the risk process of the insurer are assumed to be adapted stochastic processes, while the interest rate is assumed to be deterministic. The object is to maximize the utility of intertemporal consumption and terminal wealth. By the method of multi-person differential game, we show that the time-consistent equilibrium strategy and the corresponding equilibrium value function can be characterized by the unique solutions of a BSDE and an integral equation. Under appropriate conditions, we show that this integral equation admits a unique solution. Furthermore, we compare the time-consistent equilibrium strategies with the optimal strategy for exponential discount function, and with the strategies for naive insurers in two special cases.  相似文献   

7.
Using mean–variance criterion, we investigate a multi-period defined contribution pension fund investment problem in a Markovian regime-switching market. Both stochastic wage income and mortality risk are incorporated in our model. In a regime-switching market, the market mode changes among a finite number of regimes, and the market state process is modeled by a Markov chain. The key parameters, such as the bank interest rate, or expected returns and covariance matrix of stocks, will change according to the market state. By virtue of Lagrange duality technique, dynamic programming approach and matrix representation method, we derive expressions of efficient investment strategy and its efficient frontier in closed-form. Also, we study some special cases of our model. Finally, a numerical example based on real data from the American market sheds light on our theoretical results.  相似文献   

8.
This paper considers the robust optimal reinsurance–investment strategy selection problem with price jumps and correlated claims for an ambiguity-averse insurer (AAI). The correlated claims mean that future claims are correlated with historical claims, which is measured by an extrapolative bias. In our model, the AAI transfers part of the risk due to insurance claims via reinsurance and invests the surplus in a financial market consisting of a risk-free asset and a risky asset whose price is described by a jump–diffusion model. Under the criterion of maximizing the expected utility of terminal wealth, we obtain closed-form solutions for the robust optimal reinsurance–investment strategy and the corresponding value function by using the stochastic dynamic programming approach. In order to examine the influence of investment risk on the insurer’s investment behavior, we further study the time-consistent reinsurance–investment strategy under the mean–variance framework and also obtain the explicit solution. Furthermore, we examine the relationship among the optimal reinsurance–investment strategies of the AAI under three typical cases. A series of numerical experiments are carried out to illustrate how the robust optimal reinsurance–investment strategy varies with model parameters, and result analyses reveal some interesting phenomena and provide useful guidances for reinsurance and investment in reality.  相似文献   

9.
This paper considers an optimal asset-liability management problem with stochastic interest rates and inflation risks under the mean–variance framework. It is assumed that there are \(n+1\) assets available in the financial market, including a risk-free asset, a default-free zero-coupon bond, an inflation-indexed bond and \(n-2\) risky assets (stocks). Moreover, the liability of the investor is assumed to follow a geometric Brownian motion process. By using the stochastic dynamic programming principle and Hamilton–Jacobi–Bellman equation approach, we derive the efficient investment strategy and efficient frontier explicitly. Finally, we provide numerical examples to illustrate the effects of model parameters on the efficient investment strategy and efficient frontier.  相似文献   

10.
In this paper, based on equilibrium control law proposed by Björk and Murgoci (2010), we study an optimal investment and reinsurance problem under partial information for insurer with mean–variance utility, where insurer’s risk aversion varies over time. Instead of treating this time-inconsistent problem as pre-committed, we aim to find time-consistent equilibrium strategy within a game theoretic framework. In particular, proportional reinsurance, acquiring new business, investing in financial market are available in the market. The surplus process of insurer is depicted by classical Lundberg model, and the financial market consists of one risk free asset and one risky asset with unobservable Markov-modulated regime switching drift process. By using reduction technique and solving a generalized extended HJB equation, we derive closed-form time-consistent investment–reinsurance strategy and corresponding value function. Moreover, we compare results under partial information with optimal investment–reinsurance strategy when Markov chain is observable. Finally, some numerical illustrations and sensitivity analysis are provided.  相似文献   

11.
We solve a mean–variance optimisation problem in the accumulation phase of a defined contribution pension scheme. In a general multi-asset financial market with stochastic investment opportunities and stochastic contributions, we provide the general forms for the efficient frontier, the optimal investment strategy, and the ruin probability. We show that the mean–variance approach is equivalent to a “user-friendly” target-based optimisation problem which minimises a quadratic loss function, and provide implementation guidelines for the selection of the target. We show that the ruin probability can be kept under control through the choice of the target level. We find closed-form solutions for the special case of stochastic interest rate following the Vasiček (1977) dynamics, contributions following a geometric Brownian motion, and market consisting of cash, one bond and one stock. Numerical applications report the behaviour over time of optimal strategies and non-negative constrained strategies.  相似文献   

12.
??Under inflation influence, this paper investigate a stochastic differential game with reinsurance and investment. Insurance company chose a strategy to minimizing the variance of the final wealth, and the financial markets as a game ``virtual hand' chosen a probability measure represents the economic ``environment' to maximize the variance of the final wealth. Through this double game between the insurance companies and the financial markets, get optimal portfolio strategies. When investing, we consider inflation, the method of dealing with inflation is: Firstly, the inflation is converted to the risky assets, and then constructs the wealth process. Through change the original based on the mean-variance criteria stochastic differential game into unrestricted cases, then application linear-quadratic control theory obtain optimal reinsurance strategy and investment strategy and optimal market strategy as well as the closed form expression of efficient frontier are obtained; finally get reinsurance strategy and optimal investment strategy and optimal market strategy as well as the closed form expression of efficient frontier for the original stochastic differential game.  相似文献   

13.
In this paper, we study an optimal investment problem under the mean–variance criterion for defined contribution pension plans during the accumulation phase. To protect the rights of a plan member who dies before retirement, a clause on the return of premiums for the plan member is adopted. We assume that the manager of the pension plan is allowed to invest the premiums in a financial market, which consists of one risk-free asset and one risky asset whose price process is modeled by a jump–diffusion process. The precommitment strategy and the corresponding value function are obtained using the stochastic dynamic programming approach. Under the framework of game theory and the assumption that the manager’s risk aversion coefficient depends on the current wealth, the equilibrium strategy and the corresponding equilibrium value function are also derived. Our results show that with the same level of variance in the terminal wealth, the expected optimal terminal wealth under the precommitment strategy is greater than that under the equilibrium strategy with a constant risk aversion coefficient; the equilibrium strategy with a constant risk aversion coefficient is revealed to be different from that with a state-dependent risk aversion coefficient; and our results can also be degenerated to the results of He and Liang (2013b) and Björk et al. (2014). Finally, some numerical simulations are provided to illustrate our derived results.  相似文献   

14.
This paper studies the optimization problem of DC pension plan under mean–variance criterion. The financial market consists of cash, bond and stock. Similar to Guan and Liang (2014), we assume that the instantaneous interest rate is an affine process including the Cox–Ingersoll–Ross (CIR) model and Vasicek model. However, we assume that the expected return of the stock follows a completely different mean-reverting process, which can well display the bear and bull features of the market, and the market price of the stock index is the Ornstein–Uhlenbeck process. The pension manager thus has to undertake the risks of interest rate and market price of stock index. Besides, a special stochastic contribution rate is formulated. The goal of the pension manager is to maximize the expected terminal value and minimize the variance of terminal value. We will use the technique developed by Guan and Liang (2014) to tackle this problem and derive the closed-forms of efficient frontier and strategies. Numerical analysis is given in the end of this paper to show the economic behavior of the efficient frontier and strategies.  相似文献   

15.
In this paper, we study the stochastic Nash equilibrium portfolio game between two pension funds under inflation risks. The financial market consists of cash, bond and two stocks. It is assumed that the price index is derived through a generalized Fisher equation while the bond is related to the price index to hedge the risk of inflation. Besides, these two pension managers can invest in their familiar stocks. The goal of the pension managers is to maximize the utility of the weighted terminal wealth and relative wealth. Dynamic programming method is employed to derive the Nash equilibrium strategies. In the end, a numerical analysis is presented to reveal the economic behaviors of the two DC pension funds.  相似文献   

16.
This paper is concerned with an optimal investment and reinsurance problem with delay for an insurer under the mean–variance criterion. A three-stage procedure is employed to solve the insurer’s mean–variance problem. We first use the maximum principle approach to solve a benchmark problem. Then applying the Lagrangian duality method, we derive the optimal solutions for a variance-minimization problem. Based on these solutions, we finally obtain the efficient strategy and the efficient frontier of the insurer’s mean–variance problem. Some numerical examples are also provided to illustrate our results.  相似文献   

17.
主要研究了通货膨胀和最低保障下的DC养老金的最优投资问题。 首先, 应用伊藤公式得到通胀折现后真实股票价格的微分方程。 然后, 在DC养老金终端财富外部保障约束下, 引入欧式看涨期权, 考虑随机通胀环境下的退休时刻终端财富期望效用最大化问题, 应用鞅方法推导退休时刻以及退休前任意时刻DC养老金最优投资策略的显式解。 最后, 应用蒙特卡洛方法对结果进行数值分析, 分析最低保障对DC养老金最优投资策略的影响。  相似文献   

18.
This paper considers an optimal investment and reinsurance problem for an insurer under the mean–variance criterion. The stochastic volatility of the stock price is modeled by a Cox-Ingersoll-Ross (CIR) process. By applying a backward stochastic differential equation (BSDE) approach, we obtain a BSDE related to the underlying investment and reinsurance problem. Then solving the BSDE leads to closed-form expressions for both the efficient frontier and the efficient strategy. In the end, numerical examples are presented to analyze the economic behavior of the efficient frontier.  相似文献   

19.
In this paper, we revisit the consumption–investment problem with a general discount function and a logarithmic utility function in a non-Markovian framework. The coefficients in our model, including the interest rate, appreciation rate and volatility of the stock, are assumed to be adapted stochastic processes. Following Yong (2012a,b)’s method, we study an N-person differential game. We adopt a martingale method to solve an optimization problem of each player and characterize their optimal strategies and value functions in terms of the unique solutions of BSDEs. Then by taking limit, we show that a time-consistent equilibrium consumption–investment strategy of the original problem consists of a deterministic function and the ratio of the market price of risk to the volatility, and the corresponding equilibrium value function can be characterized by the unique solution of a family of BSDEs parameterized by a time variable.  相似文献   

20.
In this paper we study the problem of simultaneous minimization of risks, and maximization of the terminal value of expected funds assets in a stochastic defined benefit aggregated pension plan. The risks considered are the solvency risk, measured as the variance of the terminal fund’s level, and the contribution risk, in the form of a running cost associated to deviations from the evolution of the stochastic normal cost. The problem is formulated as a bi-objective stochastic problem of mean–variance and it is solved with dynamic programming techniques. We find the efficient frontier and we show that the optimal portfolio depends linearly on the supplementary cost of the fund, plus an additional term due to the random evolution of benefits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号