首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 745 毫秒
1.
We study optimal control problems for semilinear elliptic equations subject to control and state inequality constraints. In a first part we consider boundary control problems with either Dirichlet or Neumann conditions. By introducing suitable discretization schemes, the control problem is transcribed into a nonlinear programming problem. It is shown that a recently developed interior point method is able to solve these problems even for high discretizations. Several numerical examples with Dirichlet and Neumann boundary conditions are provided that illustrate the performance of the algorithm for different types of controls including bang-bang and singular controls. The necessary conditions of optimality are checked numerically in the presence of active control and state constraints.  相似文献   

2.
We study optimal control problems for semilinear elliptic equations subject to control and state inequality constraints. Both boundary control and distributed control problems are considered with boundary conditions of Dirichlet or Neumann type. By introducing suitable discretization schemes, the control problem is transcribed into a nonlinear programming problem. Necessary conditions of optimality are discussed both for the continuous and the discretized control problem. It is shown that the recently developed interior point method LOQO of [35] is capable of solving these problems even for high discretizations. Four numerical examples with Dirichlet and Neumann boundary conditions are provided that illustrate the performance of the algorithm for different types of controls including bang–bang controls.  相似文献   

3.
This paper is the continuation of the paper ``Dirichlet boundary control of semilinear parabolic equations. Part 1: Problems with no state constraints.' It is concerned with an optimal control problem with distributed and Dirichlet boundary controls for semilinear parabolic equations, in the presence of pointwise state constraints. We first obtain approximate optimality conditions for problems in which state constraints are penalized on subdomains. Next by using a decomposition theorem for some additive measures (based on the Stone—Cech compactification), we pass to the limit and recover Pontryagin's principles for the original problem. Accepted 21 July 2001. Online publication 21 December 2001.  相似文献   

4.
We consider optimal control problems governed by semilinear elliptic equations with pointwise constraints on the state variable. The main difference with previous papers is that we consider nonlinear boundary conditions, elliptic operators with discontinuous leading coefficients and unbounded controls. We can deal with problems with integral control constraints and the control may be a coefficient of order zero in the equation. We derive optimality conditions by means of a new Lagrange multiplier theorem in Banach spaces.  相似文献   

5.
In this paper we are concerned with some optimal control problems governed by semilinear elliptic equations. The case of a boundary control is studied. We consider pointwise constraints on the control and a finite number of equality and inequality constraints on the state. The goal is to derive first- and second-order optimality conditions satisfied by locally optimal solutions of the problem. Accepted 6 May 1997  相似文献   

6.
In this paper we study optimal control problems governed by semilinear parabolic equations. We obtain necessary optimality conditions in the form of an exact Pontryagin's minimum principle for distributed and boundary controls (which can be unbounded) and bounded initial controls. These optimality conditions are obtained thanks to new regularity results for linear and nonlinear parabolic equations. Accepted 17 March 1997  相似文献   

7.
《Optimization》2012,61(5):687-698
In the paper necessary and sufficient second order optimality conditions for optimal control problems governed by weakly singular non linear Hammerstein integral equations are derived. They are applied to a semilinear parabolic boundary control problem for the one dimensional heat equation.  相似文献   

8.
This paper studies second-order optimality conditions for a semilinear elliptic optimal control problem with mixed pointwise constraints. We show that in some cases, there is a common critical cone under which the second-order necessary and sufficient optimality conditions for the problem are valid. Our results approach to a theory of no-gap second-order conditions. In order to obtain such results, we reduce the problem to a special mathematical programming problem with polyhedricity constraint set. We then use some tools of variational analysis and techniques of semilinear elliptic equations to analyze second-order conditions.  相似文献   

9.
We present a smooth, that is, differentiable regularization of the projection formula that occurs in constrained parabolic optimal control problems. We summarize the optimality conditions in function spaces for unconstrained and control-constrained problems subject to a class of parabolic partial differential equations. The optimality conditions are then given by coupled systems of parabolic PDEs. For constrained problems, a non-smooth projection operator occurs in the optimality conditions. For this projection operator, we present in detail a regularization method based on smoothed sign, minimum and maximum functions. For all three cases, that is, (1) the unconstrained problem, (2) the constrained problem including the projection, and (3) the regularized projection, we verify that the optimality conditions can be equivalently expressed by an elliptic boundary value problem in the space-time domain. For this problem and all three cases we discuss existence and uniqueness issues. Motivated by this elliptic problem, we use a simultaneous space-time discretization for numerical tests. Here, we show how a standard finite element software environment allows to solve the problem and, thus, to verify the applicability of this approach without much implementation effort. We present numerical results for an example problem.  相似文献   

10.
This paper studies solution stability of a parametric boundary control problem governed by semilinear elliptic equation and nonconvex cost function with mixed state control constraints. Using the direct method and the first-order necessary optimality conditions, we obtain the upper semicontinuity and continuity of the solution map with respect to parameters.  相似文献   

11.
An optimal Robin boundary control problem associated with semilinear parabolic partial differential equations is considered. Existence of an optimal solution is proved and an optimality system of equations is derived. Semidiscrete finite element approximations of the optimality system are defined and error estimates are obtained.  相似文献   

12.
We consider time-optimal control problems for semilinear parabolic equations with pointwise state constraints and unbounded controls. A Pontryagin's principle is obtained in nonqualified form without any qualification condition. The terminal time, which is a control variable, satisfies an optimality condition, which seems to be new in the context of control problems for partial differential equations.  相似文献   

13.
We study the boundary control problems for stochastic parabolic equations with Neumann boundary conditions. Imposing super-parabolic conditions, we establish the existence and uniqueness of the solution of state and adjoint equations with non-homogeneous boundary conditions by the Galerkin approximations method. We also find that, in this case, the adjoint equation (BSPDE) has two boundary conditions (one is non-homogeneous, the other is homogeneous). By these results we derive necessary optimality conditions for the control systems under convex state constraints by the convex perturbation method.  相似文献   

14.
Arnd Rösch  Daniel Wachsmuth 《TOP》2006,14(2):263-278
A class of optimal control problems for a semilinear elliptic partial differential equation with mixed control-state constraints is considered. Existence results of an optimal control and necessary optimality conditions are stated. Moreover, a projection formula is derived that is equivalent to the necessary optimality conditions. As main result, the Lipschitz continuity of the optimal control is obtained.  相似文献   

15.
Abstract We consider an optimal fishery harvesting problem using a spatially explicit model with a semilinear elliptic PDE, Dirichlet boundary conditions, and logistic population growth. We consider two objective functionals: maximizing the yield and minimizing the cost or the variation in the fishing effort (control). Existence, necessary conditions, and uniqueness for the optimal harvesting control for both cases are established. Results for maximizing the yield with Neumann (no‐flux) boundary conditions are also given. The optimal control when minimizing the variation is characterized by a variational inequality instead of the usual algebraic characterization, which involves the solutions of an optimality system of nonlinear elliptic partial differential equations. Numerical examples are given to illustrate the results.  相似文献   

16.
This paper is concerned with distributed and Dirichlet boundary controls of semilinear parabolic equations, in the presence of pointwise state constraints. The paper is divided into two parts. In the first part we define solutions of the state equation as the limit of a sequence of solutions for equations with Robin boundary conditions. We establish Taylor expansions for solutions of the state equation with respect to perturbations of boundary control (Theorem 5.2). For problems with no state constraints, we prove three decoupled Pontryagin's principles, one for the distributed control, one for the boundary control, and the last one for the control in the initial condition (Theorem 2.1). Tools and results of Part 1 are used in the second part to derive Pontryagin's principles for problems with pointwise state constraints. Accepted 12 July 2001. Online publication 21 December 2001.  相似文献   

17.
This paper is concerned with an optimal control problem for semilinear elliptic variational inequalities associated with bilateral constraints. Existence and optimality conditions of the optimal pair are established. Received August 17, 1998, Accepted December 28, 1998  相似文献   

18.
We study subsolutions for semilinear elliptic boundary value problems in L1. We consider as well nonlinear as linear boundary conditions. The nonlinear functions may be multivated. We characterize in terms of p.d.e. the subsolutions defined by a nonlinear functional analysis argument. Applications are given to obtain existence results for semilinear elliptic boundary value problems and comparison and estimates for nonlinear parabolic boundary value problems.  相似文献   

19.
Second-order sufficient optimality conditions (SSC) are derived for an optimal control problem subject to mixed control-state and pure state constraints of order one. The proof is based on a Hamilton-Jacobi inequality and it exploits the regularity of the control function as well as the associated Lagrange multipliers. The obtained SSC involve the strict Legendre-Clebsch condition and the solvability of an auxiliary Riccati equation. They are weakened by taking into account the strongly active constraints.  相似文献   

20.
In this paper a class of semilinear elliptic optimal control problem with pointwise state and control constraints is studied. We show that sufficient second order optimality conditions for regularized problems with small regularization parameter can be obtained from a second order sufficient condition assumed for the unregularized problem. Moreover, error estimates with respect to the regularization parameter are derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号