首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《东北数学》2002,18(4):330-334
By using homogeneous balance principle,we derive a Baecklund trans-formation(BT) to (3 1)-dimensional Kadomtsev-Petviashvili( K-P) equation with variable coefficients if the variable coefficients are linearly dependent.Based on the BT,the exact solution of the (3 1)-dimensional K-P equation is given.By the same method,we derive a BT and the solution to (2 1)-dimensional K-P equation,The variable coefficients can change the amplitude of solitary wave,but cannot change the form of solitary wave.  相似文献   

2.
蒋志萍 《数学季刊》2012,(2):224-231
With the help of the variable-coefficient generalized projected Ricatti equation expansion method,we present exact solutions for the generalized(2+1)-dimensional nonlinear Schrdinger equation with variable coefficients.These solutions include solitary wave solutions,soliton-like solutions and trigonometric function solutions.Among these solutions,some are found for the first time.  相似文献   

3.
Using an extended mapping method with a linear variable separation process, a new family of the exact solutions of the (3 + 1)-dimensional Kadomtsev-Petviashvilli (KP) equation was derived. By applying the solitary wave solutions, this paper studied some newly localized excitations and the interactions of various solitary waves under the conditions of the (3 + 1)-dimensional KP equation.  相似文献   

4.
We investigate a generalized (3 + 1)-dimensional nonlinear wave equation, which can be used to depict many nonlinear phenomena in liquid containing gas bubbles. By employing the Hirota bilinear method, we derive its bilinear formalism and soliton solutions succinctly. Meanwhile, the first-order lump wave solution and second-order lump wave solution are well presented based on the corresponding two-soliton solution and four-soliton solution. Furthermore, two types of hybrid solutions are systematically established by using the long wave limit method. Finally, the graphical analyses of the obtained solutions are represented in order to better understand their dynamical behaviors.  相似文献   

5.
In this paper, the bifurcation theory of dynamical system is applied to study the traveling waves of the (3+1)-dimensional Kadomtsev-Petviashvili-Boussinesq (KP-Boussinesq) equation. By transforming the traveling wave system of the KP-Boussinesq equation into a dynamical system in $R^{3}$, we derive various parameter conditions which guarantee the existence of its bounded and unbounded orbits. Furthermore, by calculating complicated elliptic integrals along these orbits, we obtain exact expressions of all possible traveling wave solutions of the (3+1)-dimensional KP-Boussines equation.  相似文献   

6.
2+1 维变系数广义KP方程的椭圆周期解   总被引:1,自引:0,他引:1  
运用Jacobi椭圆函数展开法求得了2 1维变系数广义KadoratsevPetviashvili方程的椭圆周期解及孤立波解.  相似文献   

7.
In this paper, we construct new explicit exact solutions for the coupled the (2 + 1)-dimensional Konopelchenko–Dubrovsky equation (KD equation) by using a improved mapping approach and variable separation method. By means of the method, new types of variable-separation solutions (including solitary wave solutions, periodic wave solutions and rational function solutions) for the KD system are successfully obtained. The improved mapping approach and variable separation method can be applied to other higher-dimensional coupled nonlinear evolution equations.  相似文献   

8.
In this paper, the existence of the bright soliton solution of four variants of the Novikov–Veselov equation with constant and time varying coefficients will be studied. We analyze the solitary wave solutions of the Novikov–Veselov equation in the cases of constant coefficients, time-dependent coefficients and damping term, generalized form, and in 1 + N dimensions with variable coefficients and forcing term. We use the solitary wave ansatz method to derive these solutions. The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Parametric conditions for the existence of the exact solutions are given. The solitary wave ansatz method presents a wider applicability for handling nonlinear wave equations.  相似文献   

9.
利用hirota双线性法,得到(3+1)维孤子方程、(3+1)维KP-Boussinesq方程、(2+1)维修正Caudrey-Dodd-Gibbon-Kotera-S awada方程、Hirota-Satsuma浅水波方程的精确解,并做出一部分解的图形,进一步研究解的结构和性质.  相似文献   

10.
In this article, we establish new travelling wave solutions for the nonlinear loaded (3+1)-dimensional version of the Benjamin-Ono equation by the functional variable method. The performance of this method is reliable and effective and the method provides the exact solitary wave solutions and periodic wave solutions. The solution procedure is very simple and the traveling wave solutions are expressed by hyperbolic functions and trigonometric functions. After visualizing the graphs of the soliton solutions and the periodic wave solutions, the use of distinct values of random parameters is demonstrated to better understand their physical features. It has been shown that the method provides a very effective and powerful mathematical tool for solving nonlinear equations in mathematical physics.  相似文献   

11.
By using the bifurcation theory of dynamical systems, we study the generalized (2+1)-dimensional Boussinesq-Kadomtsev-Petviashvili equation, the existence of solitary wave solutions, compacton solutions, periodic cusp wave solutions and uncountably infinite many smooth periodic wave solutions are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of the above solutions are given. Some exact explicit parametric representations of the above waves are determined.  相似文献   

12.
Based on a suitable ansätz approach and Hirota’s bilinear form, kink solitary wave, rogue wave and mixed exponential–algebraic solitary wave solutions of (2+1)-dimensional Burgers equation are derived. The completely non-elastic interaction between kink solitary wave and rogue wave for the (2+1)-dimensional Burgers equation are presented. These results enrich the variety of the dynamics of higher dimensional nonlinear wave field.  相似文献   

13.
14.
This paper employs the theory of planar dynamical systems and undetermined coefficient method to study travelling wave solutions of the dissipative (2 + 1)-dimensional AKNS equation. By qualitative analysis, global phase portraits of the dynamic system corresponding to the equation are obtained under different parameter conditions. Furthermore, the relations between the properties of travelling wave solutions and the dissipation coefficient r of the equation are investigated. In addition, the possible bell profile solitary wave solution, kink profile solitary wave solutions and approximate damped oscillatory solutions of the equation are obtained by using undetermined coefficient method. Error estimates indicate that the approximate solutions are meaningful. Based on above studies, a main contribution in this paper is to reveal the dissipation effect on travelling wave solutions of the dissipative (2 + 1)-dimensional AKNS equation.  相似文献   

15.
In this work, the (2+1)-dimensional Konopelchenko–Dubrovsky (KD) equation is studied. The tanh–sech method, the cosh–sinh method and exponential functions method are efficiently employed to handle this equation. By means of these methods, the solitary wave, periodic wave and kink solutions are formally obtained.  相似文献   

16.
一变系数非线性发展方程组的自-BT及其精确解   总被引:1,自引:0,他引:1  
利用齐次平衡原则,导出了一变系数非线性发展方程组的自-Baecklund变换(自-BT);借助此自-BT和变系数热传导方程的各种精确解用代数的方法获得了方程组的各种精确解。  相似文献   

17.
Extend three-wave method for the (1+2)-dimensional Ito equation   总被引:1,自引:0,他引:1  
In this work, Extend three-wave method (ETM) is used to construct the novel multi-wave solutions of the (1+2)-dimensional Ito equation. As a result, three-soliton solution, doubly periodic solitary wave solutions, periodic two solitary wave solutions are obtained. It is shown that the Extend three-wave method may provide us with a straightforward and effective mathematical tool for seeking multi-wave solutions of higher dimensional nonlinear evolution equations.  相似文献   

18.
New exact soliton solutions to the Cologero–Degasperies–Fokas (CDF) equations in (1+1)-dimension and (2+1)-dimension by using the improved tanh method are investigated. First, the (1+1)-dimensional CDF equation is analyzed. By the improved tanh method, the corresponding nonlinear partial differential equation is reduced to the nonlinear ordinary differential equations and then the different types of exact solutions to the original equation are obtained based on the solutions of the Riccati equation. For the case of (2+1)-dimensional CDF equation the same computation procedure is carried out. It is presented that one could obtain new exact explicit solutions, which are traveling wave solutions, to (2+1)-dimensional CDF equation. Additionally, some graphical representations of the solitary and periodic solutions are presented.  相似文献   

19.
Nonlinear wave phenomena are of great importance in the nature, and have became for a long time a challenging research topic for both pure and applied mathematicians. In this paper the solitary wave, kink (anti-kink) wave and periodic wave solutions for a class of (3+1)-dimensional nonlinear equation were obtained by some effective methods from the dynamical systems theory.  相似文献   

20.
分离变量法是求解具有局域相干结构解的有效解析方法.考虑到传播介质的非均匀性和边界的不一致性,变系数(2+1)色散长波方程可以实际地描述宽广的河道或有限深的远海中非线性波的传播.解析研究了变系数(2+1)维色散长波方程.通过分离变量法,得到了该方程组的具有丰富结构的分离变量解.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号